M. Britzger
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Britzger.
Optics Express | 2009
F. Brückner; D. Friedrich; Tina Clausnitzer; O. Burmeister; M. Britzger; Ernst-Bernhard Kley; Karsten Danzmann; Andreas Tünnermann; Roman Schnabel
Thermal noise in multilayer optical coatings may not only limit the sensitivity of future gravitational wave detectors in their most sensitive frequency band but is also a major impediment for experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. Here, we present the experimental realization and characterization of a cavity coupler, which is based on a surface relief guided ode resonant grating. Since the required thickness of the dielectric coating is dramatically decreased compared to conventional mirrors, it is expected to provide low mechanical loss and, thus, low thermal noise. The cavity coupler was incorporated into a Fabry-Perot resonator together with a conventional high quality mirror. The finesse of this cavity was measured to be F = 657, which corresponds to a coupler reflectivity of R = 99.08 %.
Optics Express | 2011
D. Friedrich; B. Barr; F. Brückner; S. Hild; J. Nelson; J. Macarthur; Michael V. Plissi; M. Edgar; S. H. Huttner; B. Sorazu; Stefanie Kroker; M. Britzger; Ernst-Bernhard Kley; Karsten Danzmann; Andreas Tünnermann; K. A. Strain; Roman Schnabel
We report on the first demonstration of a fully suspended 10 m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and employing feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.2% at the laser wavelength of 1064 nm, which is in good agreement with rigorous simulations. Our waveguide grating design was based on tantala and fused silica and included a ≈ 20 nm thin etch stop layer made of Al2O3 that allowed us to define the grating depth accurately and preserve the waveguide thickness during the fabrication process. Demonstrating stable operation of a waveguide grating featuring high reflectivity in a suspended low-noise cavity, our work paves the way for the potential application of waveguide gratings as mirrors in high-precision interferometry, for instance in future gravitational wave observatories.
Optics Express | 2009
F. Brückner; D. Friedrich; M. Britzger; Tina Clausnitzer; O. Burmeister; Ernst-Bernhard Kley; Karsten Danzmann; Andreas Tünnermann; Roman Schnabel
For a variety of laser interferometric experiments, the thermal noise of high-reflectivity multilayer dielectric coatings limits the measurement sensitivity. Recently, monolithic high-reflection waveguide mirrors with nanostructured surfaces have been proposed to reduce the thermal noise in interferometric measurements. Drawbacks of this approach are a highly complicated fabrication process and the high susceptibility of the nanostructured surfaces to damage and pollution. Here, we propose and demonstrate a novel quasi-monolithic resonant surface reflector that also avoids the thick dielectric stack of conventional mirrors but has a flat and robust surface. Our reflector is an encapsulated subwavelength grating that is based on silicon. We measured a high reflectivity of 93% for a wavelength of lambda = 1.55 microm under normal incidence. Perfect reflectivities are possible in theory.
arXiv: Instrumentation and Detectors | 2010
Roman Schnabel; M. Britzger; F. Brückner; O. Burmeister; Karsten Danzmann; Jessica Dück; T. Eberle; D. Friedrich; H. Lück; M. Mehmet; R. Nawrodt; S. Steinlechner; B. Willke
Current interferometric gravitational wave detectors use the combination of quasi-monochromatic, continuous-wave laser light at 1064 nm and fused silica test masses at room temperature. Detectors of the third generation, such as the Einstein-Telescope, will involve a considerable sensitivity increase. The combination of 1550 nm laser radiation and crystalline silicon test masses at low temperatures might be important ingredients in order to achieve the sensitivity goal. Here we compare some properties of the fused silica and silicon test mass materials relevant for decreasing the thermal noise in future detectors as well as the recent technology achievements in the preparation of laser radiation at 1064 nm and 1550 nm relevant for decreasing the quantum noise. We conclude that silicon test masses and 1550 nm laser light have the potential to form the future building blocks of gravitational wave detection.
Optics Letters | 2009
M. Edgar; B. Barr; J. Nelson; M. V. Plissi; K. A. Strain; O. Burmeister; M. Britzger; Karsten Danzmann; Roman Schnabel; Tina Clausnitzer; F. Brückner; Ernst-Bernhard Kley; Andreas Tünnermann
All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry-Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound-Drever-Hall length sensing and control techniques to maintain the required operating condition.
Optics Express | 2010
O. Burmeister; M. Britzger; A. Thüring; D. Friedrich; F. Brückner; Karsten Danzmann; Roman Schnabel
The shot-noise limited sensitivity of Michelson-type laser interferometers with Fabry-Perot arm cavities can be increased by the so-called power-recycling technique. In such a scheme the power-recycling cavity is optically coupled with the interferometers arm cavities. A problem arises because the central coupling mirror transmits a rather high laser power and may show thermal lensing, thermo-refractive noise and photo-thermo-refractive noise. Cryogenic cooling of this mirror is also challenging, and thus thermal noise becomes a general problem. Here, we theoretically investigate an all-reflective coupling scheme of two optical cavities based on a 3-port diffraction grating.We show that power-recycling of a high-finesse arm cavity is possible without transmitting any laser power through a substrate material. The power splitting ratio of the three output ports of the grating is, surprisingly, noncritical.
Optics Letters | 2012
M. Britzger; A. Khalaidovski; B. Hemb; Ernst-Bernhard Kley; F. Brückner; Rolf-Hermann Rinkleff; Karsten Danzmann; Roman Schnabel
In this Letter, we propose and demonstrate an external-cavity diode laser in second-order Littrow configuration. This topology utilizes a low-efficiency diffraction grating to establish a high-finesse external cavity, strong optical feedback, a high polarization discrimination, and a circular TEM00 output mode. In our proof-of-concept experiment, we realized a cavity with a finesse of 1855, being, to the best of our knowledge, the highest value ever reported for a three-port-grating-coupled cavity. With optical feedback, the laser threshold of the laser diode employed was reduced by a factor of 4.
Optics Express | 2012
M. Britzger; M. Wimmer; A. Khalaidovski; D. Friedrich; Stefanie Kroker; Frank Brueckner; Ernst-Bernhard Kley; Andreas Tuennermann; Karsten Danzmann; Roman Schnabel
Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively-coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs.
Optics Letters | 2011
B. Barr; M. Edgar; J. Nelson; M. V. Plissi; S. H. Huttner; B. Sorazu; K. A. Strain; O. Burmeister; M. Britzger; D. Friedrich; Roman Schnabel; Karsten Danzmann; J. M. Hallam; A. Freise; Tina Clausnitzer; F. Brückner; Ernst-Bernhard Kley; Andreas Tünnermann
All-reflective optical systems are under consideration for future gravitational wave detector topologies. A key feature of these all-reflective systems is the use of Fabry-Perot cavities with diffraction gratings as input couplers; however, theory predicts and experiment has shown that translation of the grating surface across the incident laser light will introduce additional phase into the system. This translation can be induced through simple side-to-side motion of the coupler, yaw motion of the coupler around a central point (i.e., rotation about a vertical axis), and even via internal resonances (i.e., vibration) of the optical element. In this Letter we demonstrate on a prototype-scale suspended cavity that conventional cavity length-sensing techniques used to detect longitudinal changes along the cavity axis will also be sensitive to translational, rotational, and vibrational motion of the diffractive input coupler. We also experimentally verify the amplitude response and frequency dependency of the noise coupling as given by theory.
Optics Express | 2011
M. Britzger; D. Friedrich; Stefanie Kroker; F. Brückner; O. Burmeister; Ernst-Bernhard Kley; Andreas Tünnermann; Karsten Danzmann; Roman Schnabel
We demonstrate the optical coupling of two cavities without light transmission through a substrate. As the all-reflective coupling component, we use a dielectric low-efficiency 3-port diffraction grating. In contrast to a conventional transmissive coupling component, such an all-reflective coupler avoids all thermal effects that are associated with light absorption in the substrate. An all-reflective scheme for cavity coupling is of interest in the field of gravitational wave detection. In such detectors light that is resonantly enhanced inside the so-called power-recycling cavity is coupled to (kilometre-scale) Fabry-Perot resonators representing the arms of a Michelson interferometer. We realized such an all-reflective coupling in a table-top experiment. Our findings are in qualitative agreement with the theoretical model incorporating the characteristics of the 3-port grating used, and therefore encourage the application of all-reflective cavity couplers in future gravitational wave detectors.