Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Brodeur is active.

Publication


Featured researches published by M. Brodeur.


Physical Review Letters | 2008

First Penning-trap mass measurement of the exotic halo nucleus 11Li.

M. Smith; M. Brodeur; Thomas Brunner; S. Ettenauer; A. Lapierre; R. Ringle; V. L. Ryjkov; F. Ames; P. Bricault; Gordon W. F. Drake; P. P. J. Delheij; D. Lunney; F. Sarazin; J. Dilling

M. Smith, M. Brodeur, T. Brunner, S. Ettenauer, A Lapierre, R. Ringle, V. L. Ryjkov, F. Ames, P. Bricault, G. W. F. Drake, P. Delheij, D Lunney, and J. Dilling TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC, Canada Technische Universität München, E12, James Franck Strasse, Garching, Germany Department of Physics, University of Windsor, Windsor, Ontario, Canada and CSNSM/CNRS/IN2P3, Universite de Paris-Sud, F-91405, Orsay, France (Dated: July 21, 2008)


Review of Scientific Instruments | 2012

The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements

M.C. Simon; J.C. Bale; U. Chowdhury; B. Eberhardt; S. Ettenauer; A.T. Gallant; F. Jang; A. Lennarz; M. Luichtl; T. Ma; D. Robertson; Vanessa V. Simon; C. Andreoiu; M. Brodeur; T. Brunner; A. Chaudhuri; J. R. Crespo López-Urrutia; P. Delheij; D. Frekers; A. Grossheim; G. Gwinner; A.A. Kwiatkowski; A. Lapierre; E. Mané; M. R. Pearson; R. Ringle; B.E. Schultz; J. Dilling

TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITANs charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.


Physical Review Letters | 2011

First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap

S. Ettenauer; M.C. Simon; A.T. Gallant; T. Brunner; U. Chowdhury; Vanessa V. Simon; M. Brodeur; A. Chaudhuri; E. Mané; C. Andreoiu; G. Audi; J. R. Crespo López-Urrutia; P. Delheij; G. Gwinner; A. Lapierre; D. Lunney; M. R. Pearson; R. Ringle; Joachim Ullrich; J. Dilling

Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed β emitter 74Rb (T(1/2)=65  ms). The determination of its atomic mass and an improved Q(EC) value are presented.


Physical Review Letters | 2012

First direct mass measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He.

M. Brodeur; T. Brunner; C. Champagne; S. Ettenauer; M. Smith; A. Lapierre; R. Ringle; V. L. Ryjkov; Sonia Bacca; P. P. J. Delheij; Gordon W. F. Drake; D. Lunney; A. Schwenk; J. Dilling

The first direct mass measurement of {6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of {8}He was determined with improved precision over our previous measurement. The obtained masses are m({6}He)=6.018 885 883(57)  u and m({8}He)=8.033 934 44(11)  u. The {6}He value shows a deviation from the literature of 4σ. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) and 1.959(16) fm for {6}He and {8}He, respectively. We present a detailed comparison to nuclear theory for {6}He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012

TITAN's digital RFQ ion beam cooler and buncher, operation and performance

T. Brunner; M. Smith; M. Brodeur; S. Ettenauer; A.T. Gallant; Vanessa V. Simon; A. Chaudhuri; A. Lapierre; E. Mané; R. Ringle; M.C. Simon; J.A. Vaz; P.P.J. Delheij; M. Good; M. R. Pearson; J. Dilling

We present a description of the Radio Frequency Quadrupole (RFQ) ion trap built as part of the TITAN facility. It consists of a gas-filled, segmented, linear Paul trap and is the first stage of the TITAN setup with the purpose of cooling and bunching radioactive ion beams delivered from ISAC-TRIUMF. This is the first such device to be driven digitally, i.e., using a high voltage (Vpp=400V), wide bandwidth (0.2<f<1.2MHz) square-wave as compared to the typical sinusoidal wave form. Results from the commissioning of the device as well as systematic studies with stable and radioactive ions are presented including efficiency measurements with stable 133Cs and radioactive 124,126Cs. A novel and unique mode of operation of this device is also demonstrated where the cooled ion bunches are extracted in reverse mode, i.e., in the same direction as previously injected.


International Journal of Mass Spectrometry | 2012

Verifying the accuracy of the TITAN Penning-trap mass spectrometer

M. Brodeur; V. L. Ryjkov; T. Brunner; S. Ettenauer; A.T. Gallant; Vanessa V. Simon; M. Smith; A. Lapierre; R. Ringle; P. P. J. Delheij; M. Good; D. Lunney; J. Dilling

Abstract TITAN (TRIUMFs Ion Traps for Atomic and Nuclear science) is an online facility designed to carry out high-precision mass measurements on singly and highly charged radioactive ions. The TITAN Penning trap has been built and optimized in order to perform such measurements with an accuracy in the sub ppb-range. A detailed characterization of the TITAN Penning trap is presented and a new compensation method is derived and demonstrated, verifying the performance in the range of sub-ppb.


Physical Review Letters | 2013

First direct double-β decay Q-value measurement of Se82 in support of understanding the nature of the neutrino

D. L. Lincoln; J. D. Holt; G. Bollen; M. Brodeur; S. Bustabad; J. Engel; Samuel J. Novario; Matthew Redshaw; R. Ringle; S. Schwarz

In anticipation of results from current and future double-β decay studies, we report a measurement resulting in a (82)Se double-β decay Q value of 2997.9(3) keV, an order of magnitude more precise than the currently accepted value. We also present preliminary results of a calculation of the (82)Se neutrinoless double-β decay nuclear matrix element that corrects in part for the small size of the shell model single-particle space. The results of this work are important for designing next generation double-β decay experiments and for the theoretical interpretations of their observations.


Physical Review Letters | 2012

Elucidation of the Anomalous A ¼ 9 Isospin Quartet Behavior

M. Brodeur; T. Brunner; S. Ettenauer; A. Lapierre; R. Ringle; B. A. Brown; D. Lunney; J. Dilling

Recent high-precision mass measurements of 9Li and 9Be, performed with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light of state-of-the-art shell model calculations. We find an explanation for the anomalous isobaric mass multiplet equation behavior for the two A=9 quartets. The presence of a cubic d=6.3(17) keV term for the J(π)=3/2(-) quartet and the vanishing cubic term for the excited J(π)=1/2(-) multiplet depend upon the presence of a nearby T=1/2 state in 9B and 9Be that induces isospin mixing. This is contrary to previous hypotheses involving purely Coulomb and charge-dependent effects. T=1/2 states have been observed near the calculated energy, above the T=3/2 state. However, an experimental confirmation of their J(π) is needed.


European Physical Journal A | 2013

Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

T. Brunner; A. Lapierre; C. Andreoiu; M. Brodeur; P. Delheji; S. Ettenauer; D. Frekers; A.T. Gallant; R. Gernhäuser; A. Grossheim; R. Krücken; A. Lennarz; D. Lunney; D. Mücher; R. Ringle; M.C. Simon; Vanessa V. Simon; S.K.L. Sjue; K. Zuber; J. Dilling

Abstract.A new technique has been developed at the TRIUMF’s TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of


Physical Review Letters | 2014

Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

A.T. Gallant; M. Brodeur; C. Andreoiu; A. Bader; A. Chaudhuri; U. Chowdhury; A. Grossheim; R. Klawitter; A.A. Kwiatkowski; K. G. Leach; A. Lennarz; T.D. Macdonald; B.E. Schultz; J. Lassen; H. Heggen; S. Raeder; A. Teigelhöfer; B. A. Brown; A. Magilligan; J.D. Holt; Javier Menéndez; J. Simonis; A. Schwenk; J. Dilling

\beta

Collaboration


Dive into the M. Brodeur's collaboration.

Top Co-Authors

Avatar

R. Ringle

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

A.T. Gallant

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

A. Lapierre

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

S. Ettenauer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

G. Bollen

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

S. Schwarz

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

D. Lunney

University of Paris-Sud

View shared research outputs
Researchain Logo
Decentralizing Knowledge