M. Burgay
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Burgay.
Science | 2006
M. Kramer; I. H. Stairs; R. N. Manchester; M. A. McLaughlin; A. G. Lyne; R. D. Ferdman; M. Burgay; D. R. Lorimer; Andrea Possenti; N. D'Amico; J. Sarkissian; G. Hobbs; J. E. Reynolds; P. C. C. Freire; F. Camilo
The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einsteins theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the “post-Keplerian” parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the systems center of mass is extremely small. Combined with the systems location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.
Monthly Notices of the Royal Astronomical Society | 2006
D. R. Lorimer; A. J. Faulkner; A. G. Lyne; R. N. Manchester; M. Kramer; M. A. McLaughlin; G. Hobbs; Andrea Possenti; I. H. Stairs; F. Camilo; M. Burgay; N. D'Amico; A. Corongiu; F. Crawford
We present the discovery and follow-up observations of 142 pulsars found in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. These new discoveries bring the total number of pulsars found by the survey to 742. In addition to tabulating spin and astrometric parameters, along with pulse width and flux density information, we present orbital characteristics for 13 binary pulsars which form part of the new sample. Combining these results from another recent Parkes multibeam survey at high Galactic latitudes, we have a sample of 1008 normal pulsars which we use to carry out a determination of their Galactic distribution and birth rate. We infer a total Galactic population of 30 000 ± 1100 potentially detectable pulsars (i.e. those beaming towards us) having 1.4-GHz luminosities above 0.1 mJy kpc 2 . Adopting the Tauris & Manchester beaming model, this translates to a total of 155 000 ± 6000 active radio pulsars in the Galaxy above this luminosity limit. Using a pulsar current analysis, we derive the birth rate of this population to be 1.4 ± 0.2 pulsars per century. An important conclusion from our work is that the inferred radial density function of pulsars depends strongly on the assumed distribution of free electrons in the Galaxy. As a result, any analyses using the most recent electron model of Cordes & Lazio predict a dearth of pulsars in the inner Galaxy. We show that this model can also bias the inferred pulsar scaleheight with respect to the Galactic plane. Combining our results with other Parkes multibeam surveys we find that the population is best described by an exponential distribution with a scaleheight of 330 pc. Surveys underway at Parkes and Arecibo are expected to improve the knowledge of the radial distribution outside the solar circle, and to discover several hundred new pulsars in the inner Galaxy.
Nature | 2013
A. Papitto; C. Ferrigno; E. Bozzo; N. Rea; L. Burderi; M. Burgay; Sergio Campana; T. Di Salvo; M. Falanga; Miroslav Filipovic; P. C. C. Freire; J. W. T. Hessels; A. Possenti; Scott M. Ransom; Alessandro Riggio; Patrizia Romano; J. Sarkissian; I. H. Stairs; L. Stella; D. F. Torres; M. H. Wieringa; G. F. Wong
It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star’s rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.
Monthly Notices of the Royal Astronomical Society | 2011
R. van Haasteren; Y. Levin; G. H. Janssen; K. Lazaridis; M. Kramer; B. W. Stappers; G. Desvignes; M. B. Purver; A. G. Lyne; R. D. Ferdman; A. Jessner; I. Cognard; G. Theureau; N. D'Amico; Andrea Possenti; M. Burgay; A. Corongiu; J. W. T. Hessels; R. Smits; J. P. W. Verbiest
The paper ‘Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data’ was published in Mon. Not. R. Astron. Soc. 414, 3117–3128 (2011).
Nature | 2016
E. F. Keane; S. Johnston; S. Bhandari; E. D. Barr; N. D. R. Bhat; M. Burgay; M. Caleb; Chris Flynn; A. Jameson; M. Kramer; E. Petroff; A. Possenti; W. van Straten; M. Bailes; S. Burke-Spolaor; R. P. Eatough; B. W. Stappers; Tomonori Totani; Mareki Honma; Hisanori Furusawa; Takashi Hattori; Yuu Niino; H. Sugai; Tsuyoshi Terai; Nozomu Tominaga; Shotaro Yamasaki; Naoki Yasuda; R. Allen; Jeff Cooke; J. Jencson
In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy’s redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called ‘missing baryons’. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.E. F. Keane, S. Johnston, S. Bhandari, E. Barr, N. D. R. Bhat, M. Burgay, M. Caleb, C. Flynn, A. Jameson, M. Kramer, E. Petroff, A. Possenti, W. van Straten, M. Bailes, S. Burke-Spolaor, R. P. Eatough, B. Stappers, T. Totani, M. Honma, H. Furusawa, T. Hattori, T. Morokuma, Y. Niino, H. Sugai, T. Terai, N. Tominaga, S. Yamasaki, N. Yasuda, R. Allen, J. Cooke, J. Jencson, M. M. Kasliwal, D. L. Kaplan, S. J. Tingay, A. Williams, R. Wayth, P. Chandra, D. Perrodin, M. Berezina, M. Mickaliger & C. Bassa
Monthly Notices of the Royal Astronomical Society | 2004
G. Hobbs; A. J. Faulkner; I. H. Stairs; F. Camilo; R. N. Manchester; A. G. Lyne; M. Kramer; N. D'Amico; V. M. Kaspi; Andrea Possenti; M. A. McLaughlin; D. R. Lorimer; M. Burgay; B. C. Joshi; F. Crawford
The Parkes multibeam pulsar survey has led to the discovery of more than 700 pulsars. In this paper, we provide timing solutions, flux densities and pulse profiles for 180 of these new discoveries. Two pulsars, PSRs J1736−2843 and J1847−0130, have rotational periods P > 6 s and are therefore among the slowest rotating radio pulsars known. Conversely, with P = 1.8 ms, PSR J1843−1113 has the third-shortest period of pulsars currently known. This pulsar and PSR J1905+0400 (P = 3.8 ms) are both solitary. We also provide orbital parameters for a new binary system, PSR J1420−5625, which has P = 34 ms, an orbital period of 40 d and a minimum companion mass of 0.4 solar masses. The 10 ◦ -wide strip along the Galactic plane that was surveyed is known to contain 264 radio pulsars that were discovered prior to the multibeam pulsar survey. We have redetected almost all of these pulsars and provide new dispersion measure values and flux densities at 20 cm for the redetected pulsars.
The Astrophysical Journal | 2012
N. Rea; G. L. Israel; P. Esposito; José A. Pons; Ascension Camero-Arranz; R. P. Mignani; R. Turolla; S. Zane; M. Burgay; Andrea Possenti; Sergio Campana; Teru Enoto; Neil Gehrels; Ersin Gogus; Diego Gotz; C. Kouveliotou; Kazuo Makishima; S. Mereghetti; Sam R. Oates; David M. Palmer; Rosalba Perna; L. Stella; A. Tiengo
We report on the long-term X-ray monitoring withSwift,RXTE,Suzaku,Chandra, andXMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3−1606 (SGR 1822−1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3−1606’s radiopulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative ˙ P = 8.3(2) × 10 −14 ss −1 , which implies an inferred dipolar surface magnetic field of B � 2.7 × 10 13 G at the equator. This measurement makes Swift J1822.3−1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3−1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ∼ 1.5 × 10 14 G and Btor ∼ 7 × 10 14 G, respectively, and if its current age
Monthly Notices of the Royal Astronomical Society | 2016
D. J. Champion; E. Petroff; M. Kramer; M. J. Keith; M. Bailes; E. D. Barr; S. D. Bates; N. D. R. Bhat; M. Burgay; S. Burke-Spolaor; C. M. L. Flynn; A. Jameson; S. Johnston; C. Ng; L. Levin; A. Possenti; B. W. Stappers; W. van Straten; David J. Thornton; C. Tiburzi; A. G. Lyne
The detection of five new fast radio bursts (FRBs) found in the 1.4-GHz High Time Resolution Universe high-latitude survey at Parkes, is presented. The rate implied is 7(-3)(+5) x 10(3) (95 per cent) FRBs sky(-1) d(-1) above a fluence of 0.13 Jy ms for an FRB of 0.128 ms duration to 1.5 Jy ms for 16 ms duration. One of these FRBs has a two-component profile, in which each component is similar to the known population of single component FRBs and the two components are separated by 2.4 +/- 0.4 ms. All the FRB components appear to be unresolved following deconvolution with a scattering tail and accounting for intrachannel smearing. The two-component burst, FRB 121002, also has the highest dispersion measure (1629 pc cm(-3)) of any FRB to-date. Many of the proposed models to explain FRBs use a single high-energy event involving compact objects (such as neutron-star mergers) and therefore cannot easily explain a two-component FRB. Models that are based on extreme versions of flaring, pulsing, or orbital events, however, could produce multiple component profiles. The compatibility of these models and the FRB rate implied by these detections is discussed.
The Astrophysical Journal | 2010
Lina Levin; M. Bailes; S. D. Bates; N. D. Ramesh Bhat; M. Burgay; S. Burke-Spolaor; Nichi DAmico; Simon Johnston; M. J. Keith; M. Kramer; S. Milia; Andrea Possenti; N. Rea; B. W. Stappers; Willem van Straten
As part of a survey for radio pulsars with the Parkes 64 m telescope, we have discovered PSR J1622-4950, a pulsar with a 4.3 s rotation period. Follow-up observations show that the pulsar has the highest inferred surface magnetic field of the known radio pulsars (B {approx}3 x 10{sup 14} G), and it exhibits significant timing noise and appears to have an inverted spectrum. Unlike the vast majority of the known pulsar population, PSR J1622-4950 appears to switch off for many hundreds of days and even in its on-state exhibits extreme variability in its flux density. Furthermore, the integrated pulse profile changes shape with epoch. All of these properties are remarkably similar to the only two magnetars previously known to emit radio pulsations. The position of PSR J1622-4950 is coincident with an X-ray source that, unlike the other radio pulsating magnetars, was found to be in quiescence. We conclude that our newly discovered pulsar is a magnetar-the first to be discovered via its radio emission.
Monthly Notices of the Royal Astronomical Society | 2004
A. J. Faulkner; I. H. Stairs; M. Kramer; A. G. Lyne; G. Hobbs; Andrea Possenti; D. R. Lorimer; R. N. Manchester; M. A. McLaughlin; N. D'Amico; F. Camilo; M. Burgay
The Parkes Multibeam Pulsar Survey is the most successful survey of the Galactic plane ever performed, finding over 600 pulsars in the initial processing. We report on a reprocessing of all 40 000 beams with a number of algorithms, including conventional frequency-domain searches and an acceleration search for fast binary pulsars. The very large volume of results coupled with the need to distinguish new candidates from known pulsars and their many harmonics, often with multiple detections from different search algorithms, necessitated the development of a new graphical selection tool tightly linked to a web-based results data base. We discuss and demonstrate the benefits of these software systems, which are specifically designed for large survey projects. The results of this processing have been encouraging. We have discovered 128 new pulsars, including 11 binary and 15 millisecond pulsars; in addition to those previously found in the survey, we have thus far discovered 737 pulsars. In this paper, we discuss the discoveries of PSR J1744-3922 (a 172-ms mildly recycled pulsar in a 4.6-h orbit that exhibits nulling behaviour, not previously observed in recycled or binary objects), PSR J1802-2124 (an intermediate mass binary pulsar) and PSR J1801-1417 (a solitary millisecond pulsar).
Collaboration
Dive into the M. Burgay's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs