Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.C. Diez is active.

Publication


Featured researches published by M.C. Diez.


Electrochimica Acta | 2002

Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode

M.S. Ureta-Zañartu; P. Bustos; Cristhian Berríos; M.C. Diez; María de la Luz Mora; C. Gutiérrez

The electrooxidation of 2,4-dichlorophenol (2,4-DCP) on a rotating GC disk electrode has been studied by cyclic voltammetry and chronoamperometry at different pH values. A dual mechanism where one pathway yields a quinone-like species and the other one leads to insoluble polymers that passivate the electrode surface is proposed. From a comparative study of the electrooxidation of several DCPs at pH 2.2, it is concluded that for the same number of chlorine atoms the ortho isomer is oxidized at a lower potential than the para isomer. The anodic peak potential for electrooxidation of the chlorophenols (CPs) on glassy carbon increases with increasing pKa, with a slope of 35 mV (pKa unit)−1, illustrating the correlation of one chemical parameter of the CPs, namely their acidity constant, with their electrochemical reactivity.


Critical Reviews in Microbiology | 2005

Fungal Diversity and Use in Decomposition of Environmental Pollutants

G.R. Tortella; M.C. Diez; Nelson Durán

This article presents a critical review of the actual state of fungal activities on environmental pollutants, fungal diversity, the use of fungi in the degradation of chemical pollutants, enzyme degrading systems and perspectives on the use of fungi in bioremediation and unexplored research. The ability of fungi to transform or metabolize chemical pollutants has received much attention due to environmental persistence and chemical toxicity. The fungal degradation of xenobiotics is looked upon as an effective method of removing these pollutants from the environment by a process which is currently known as bioremediation. This review summarizes information from fundamental works that have revealed that a wide variety of fungi are capable of degrading an equally wide range of toxical chemical. The capacity of non-ligninolytic and ligninolytic fungi in the bioremediation of polycyclic aromatic hydrocarbon (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX), chlorophenols, polychlorinated biphenyl, munitions waste and pesticides have been discussed. Besides this, several extracellular enzymes are involved in the metabolism of xenobiotic compounds as well as other factors related to these processes.


Chemosphere | 2014

Enzymes as useful tools for environmental purposes.

Maria A. Rao; Rosalia Scelza; Francisca Acevedo; M.C. Diez; Liliana Gianfreda

In the environment enzymes may play important and different roles at least in three cases: as main agents (as isolated, cell-bound or immobilized enzymes) in charge of either the transformation and/or degradation of compounds polluting the environment and the restoration of the polluted environment; as reliable and sensitive tools to detect and measure the amount and concentration of pollutants before, during and after the restoration process; as reliable, easy and sensitive indicators of quality and health status of the environment subjected to the restoration process. To our knowledge papers or reviews integrating findings on these three functions of enzymes are missing in literature. Therefore the main scope of the present paper is to briefly encompass general and specific concepts about roles of enzymes as decontaminating agents, pollutant assaying agents and indicators of environment safety. Examples chosen among those published very recently, supporting and confirming peculiarities, features, and performance of enzymatic agents will be illustrated.


Bioresource Technology | 2002

Operational factors and nutrient effects on activated sludge treatment of Pinus radiata kraft mill wastewater

M.C. Diez; G Castillo; L Aguilar; Gladys Vidal; María de la Luz Mora

The biodegradability of Pinus radiata bleached kraft mill wastewater by an activated sludge treatment during a period of 280 days was evaluated. The effect of varying hydraulic retention time (HRT) in the range of 48 to 4.5 h and nitrogen (N) and phosphorus (P) addition on removal of biological oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (TSS and VSS), total phenolic compounds, tannin and lignin and reduction of toxicity was investigated. Removal of BOD5 was higher than 90% when HRT varied from 16 to 6 h, but decreased when HRT was less than 6 h. Similar performance was observed for COD removal, which was about 60% when HRT was varied from 16 to 6 h. Removal of total phenolic compounds and tannin and lignin was seriously affected by HRT. N and P addition to maintaining a ratio of 100:5:0.3 provided optimal BOD5, COD and suspended solids removal when HRT varied from 16 to 7 h, and no toxicity (using Daphnia) was detected in the treated effluent. When HRT was less than 6 h, the system showed destabilisation and pH, COD, BOD5 and suspended solids removal decreased.


Electrochimica Acta | 2001

Electro-oxidation of chlorophenols at a gold electrode

M.S. Ureta-Zañartu; P. Bustos; M.C. Diez; María de la Luz Mora; C. Gutiérrez

Abstract The electrooxidation of chlorophenols (CPs) with one to five chlorine atoms at gold electrodes was studied by cyclic voltammetry (CV) and the electrochemical quartz crystal microbalance (EQCM). The results obtained indicate that the oxidation of CPs at gold electrodes depends on the pH, the phenol concentration, the number of chlorine atoms in the aromatic ring, and the position of these Cl atoms with respect to the phenolic OH. At low scan rates and/or high CP concentrations, for mono- and di-CPs the phenoxi radicals condense forming polymers, or at least oligomers, that precipitate at the electrode surface, the resulting film behaving as an insulator that passivates the gold electrode. On the contrary, at high potential scan rates and/or low CP concentrations the film can be porous enough for charge transfer to continue.


Journal of Soil Science and Plant Nutrition | 2010

BIOLOGICAL ASPECTS INVOLVED IN THE DEGRADATION OF ORGANIC POLLUTANTS

M.C. Diez

Worldwide use of pesticide has increased dramatically during the last two decades. As a consequence, pesticide residues and their transformation products are frequently found in groundwater and surface waters. This review summarizes information about polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), some chlorophenols; it mainly empathizes on pesticides, their incorporation into the environment, microorganisms involved in their degradation and, some physicochemical aspects of pesticides behavior in soils. Details about residues of pesticides in groundwater and superficial water found in some foreign countries and in Chile are reported, as well. The fungal degradation of organic pollutants (xenobiotics) is considered as an effective method to remove these pollutants from the environment by a process which is currently known as bioremediation. Therefore, the degradation of pesticides by soil microorganisms with particular attention to white-rot fungi is also addressed. Finally, a simple and effective system (biobed) to minimize environmental contamination from pesticide manipulation, especially when filling the spraying equipment, a typical point source of contamination, is presented here.


Critical Reviews in Environmental Science and Technology | 2008

Transformation of Chlorinated Phenolic Compounds by White Rot Fungi

O. Rubilar; M.C. Diez; Liliana Gianfreda

Chlorinated phenolic compounds are among the most abundant recalcitrant wastes produced by the paper and pulp industry, being accumulated in the effluents after secondary treatments. Due to their high toxicity to a wide range of organisms, chlorinated phenolic compounds pose a big concern to human and environmental health. These compounds are produced upon the partial degradation of lignin during bleaching process, and as such they are degradable by white rot fungi, the only organisms capable of degrading lignin to CO2 and H2O. White rot fungi are a group of organisms very suitable for the removal of chlorinated phenolic compounds from the environment. Indeed, they are robust, ubiquitous organisms and may survive also in the presence of high concentrations of various pollutants, even with a low bioavailability. The activity of white rot fungi is mainly due to the action of oxidoreductive enzymes, i.e., laccase, manganese peroxidase and lignin peroxidase, which are deliberately released by fungal cells into their nearby environment. In cases of secondary metabolism and oxidative stress, the fungi produce other intra- and extracellular enzymes to provide substrates for the key enzymes just mentioned. Phanerochaete chrysosporium is one of the most widely studied fungi, for which intermediary products and reactions involved in the degradation of chlorophenols have been identified. Extracellular laccases and peroxidases carry out the first productive step in the oxidation of chlorophenols, forming para-quinones and consequently releasing a chlorine atom. Further degradative steps involving several enzymes and highly reactive, nonspecific redox mediators produced by the fungus render it capable of efficiently degrading several toxic compounds. In soil environment, chlorophenols may be involved in physical–chemical processes such as polymerization and/or adsorption of/on humic substances that may hinder their degradation by microbial cells, even though both processes can result in dehalogenation of the chlorinated compounds. This review analyzes the presence of chlorophenols in the environment, their main chemical and physical properties, and the main processes in their degradation by white rot fungi with particular attention to soil environment. The reactions involved in the process, the intermediary products, the factors that may affect the fungal transformation of chlorophenols, and the possible applications for environmental purposes of both the whole fungal cells and/or their enzymes as isolated catalytic agents are also addressed.


Biotechnology Letters | 2013

Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

O. Rubilar; Mahendra Rai; G.R. Tortella; M.C. Diez; Amedea B. Seabra; Nelson Durán

Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.


Chemosphere | 2010

Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor

Francisca Acevedo; Leticia Pizzul; M.dP. Castillo; M. E. González; M. Cea; L. Gianfreda; M.C. Diez

Manganese peroxidase (MnP) produced by Anthracophyllum discolor, a Chilean white rot fungus, was immobilized on nanoclay obtained from volcanic soil and its ability to degrade polycyclic aromatic hydrocarbons (PAHs) compared with the free enzyme was evaluated. At the same time, nanoclay characterization was performed. Nanoclay characterization by transmission electronic microscopy showed a particle average size smaller than 100 nm. The isoelectric points (IEP) of nanoclay and MnP from A. discolor were 7.0 and 3.7, respectively, as determined by micro electrophoresis migration and preparative isoelectric focusing. Results indicated that 75% of the enzyme was immobilized on the nanoclay through physical adsorption. As compared to the free enzyme, immobilized MnP from A. discolor achieved an improved stability to temperature and pH. The activation energy (Ea) value for immobilized MnP (51.9 kJ mol(-1)) was higher than that of the free MnP (34.4 kJ mol(-1)). The immobilized enzyme was able to degrade pyrene (>86%), anthracene (>65%), alone or in mixture, and to a less extent fluoranthene (<15.2%) and phenanthrene (<8.6%). Compared to free MnP from A. discolor, the enzyme immobilized on nanoclay enhanced the enzymatic transformation of anthracene in soil. Overall results indicate that nanoclay, a carrier of natural origin, is a suitable support material for MnP immobilization. In addition, immobilized MnP shows an increased stability to high temperature, pH and time storage, as well as an enhanced PAHs degradation efficiency in soil. All these characteristics may suggest the possible use of nanoclay-immobilized MnP from A. discolor as a valuable option for in situ bioremediation purposes.


Bioresource Technology | 2001

Molecular weight distribution of Pinus radiata kraft mill wastewater treated by anaerobic digestion

Gladys Vidal; S Videla; M.C. Diez

Kraft mill is responsible for massive discharge of highly polluted effluents. The main characteristics of this effluent are high toxicity and low biodegradability due to tannin, lignin and chlorophenol compounds. The composition may vary dramatically depending, for instance, on the utilised feedstock and process. The purpose of this work was to investigate the molecular weight distribution of Pinus radiata kraft pulping wastewater treated by anaerobic digestion by using two types of anaerobic reactors: fixed bed and sludge blanket. Anaerobic sludge blanket (UASB) and anaerobic filter (AF) were operated. In both reactors, the total alkalinity ranged between 1.0 and 1.5 g CaCO3/l, while the organic load rate (OLR) was increasing during operation from 1.2 to 3.3 gCOD/l d. COD and total phenolic compounds (UV215) removal ranged between 30-50% and 13-20%, respectively, while the BOD5 removal ranged 60-90%. However only a partial biodegradation (10-43%) of tannin and lignin was observed. Results from ultrafiltration analyses indicated that the fraction with a molecular weight (MW) < 1000, COD and colour decreased after anaerobic treatment, but the total phenolic compounds increased. In the 1000 < MW < 10,000 fraction, there was no change in COD, UV215 and colour. In the > 10,000 MW fraction, colour and COD fraction increased by 14% and 5%, respectively, after anaerobic treatment. It can be concluded from this study, that treatment with UASB or AF reactors is not enough, under the conditions tested, for a large COD removal from Pinus radiata wastewater.

Collaboration


Dive into the M.C. Diez's collaboration.

Top Co-Authors

Avatar

O. Rubilar

University of La Frontera

View shared research outputs
Top Co-Authors

Avatar

G.R. Tortella

University of La Frontera

View shared research outputs
Top Co-Authors

Avatar

M. Cea

University of La Frontera

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Navia

University of La Frontera

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe Gallardo

University of La Frontera

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi Schalchli

University of La Frontera

View shared research outputs
Top Co-Authors

Avatar

Nelson Durán

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge