Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.C. Lucy is active.

Publication


Featured researches published by M.C. Lucy.


Reproduction in Domestic Animals | 2008

Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction.

M.C. Lucy

Growth hormone (GH) and insulin-like growth factor-I (IGF-I) control growth and lactation in cattle and swine. Insulin participates in the endocrinology of growth and lactation because insulin and GH are antagonistic in their actions. Dairy cows experience a period of negative energy balance during the first 4-8 weeks post-partum. During this period, their somatotropic axis (comprised of GH, the GH receptor and IGF-I) becomes uncoupled and there is elevated GH and diminished IGF-I in the circulation. Blood insulin concentrations are low as well. Sows are different from dairy cows because their somatotropic axis remains coupled during lactation and both GH and IGF-I are elevated. Nonetheless, sows that become catabolic during lactation will have reduced IGF-I concentrations. Sows are inseminated after weaning so their metabolic state is different from post-partum beef and dairy cows that are inseminated when they are lactating. Dairy cows are fed ad libitum and naturally have low IGF-I during lactation. Sows have elevated IGF-I when they are well-fed. A threshold of IGF-I protein in follicular fluid may be met by local ovarian (paracrine/autocrine) and endocrine sources of IGF-I. Nutritionally induced changes in insulin and in liver IGF-I secretion that arise from perturbations of the somatotropic axis have a direct effect on the ovary through the endocrine actions of insulin and IGF-I. Sows and cows that are nutritionally compromised have low concentrations of insulin and IGF-I in their blood and this theoretically reduces ovarian responsiveness to gonadotropins. Although sows are inseminated after weaning, there appear to be carry-over effects of the previous lactation on the ovarian follicular populations that develop after the sow is weaned. Understanding the mechanisms through which metabolic hormones control ovarian function may lead to improved reproductive management of both pigs and cattle because lactation and post-partum reproduction are closely tied in both species.


Journal of Dairy Science | 2016

Invited review: Recommendations for reporting intervention studies on reproductive performance in dairy cattle: Improving design, analysis, and interpretation of research on reproduction

I.J. Lean; M.C. Lucy; J.P. McNamara; Barry J. Bradford; E. Block; Jennifer M. Thomson; J. M. Morton; Pietro Celi; A.R. Rabiee; J.E.P. Santos; W.W. Thatcher; S.J. LeBlanc

Abundant evidence from the medical, veterinary, and animal science literature demonstrates that there is substantial room for improvement of the clarity, completeness, and accuracy of reporting of intervention studies. More rigorous reporting guidelines are needed to improve the quality of data available for use in comparisons of outcomes (or meta-analyses) of multiple studies. Because of the diversity of factors that affect reproduction and the complexity of interactions between these, a systematic approach is required to design, conduct, and analyze basic and applied studies of dairy cattle reproduction. Greater consistency, clarity, completeness, and correctness of design and reporting will improve the value of each report and allow for greater depth of evaluation in meta-analyses. Each of these benefits will improve understanding and application of current knowledge and better identify questions that require additional modeling or primary research. The proposed guidelines and checklist will aid in the design, conduct, analysis, and reporting of intervention studies. We propose an adaptation of the REFLECT (Reporting Guidelines for Randomized Controlled Trials for Livestock and Food Safety) statement to provide guidelines and a checklist specific to reporting intervention studies in dairy cattle reproduction. Furthermore, we provide recommendations that will assist investigators to produce studies with greater internal and external validity that can more often be included in systematic reviews and global meta-analyses. Such studies will also assist the development of models to describe the physiology of reproduction.


Reproduction in Domestic Ruminants VI. Proceedings of the Seventh International Symposium on Reproduction in Domestic Ruminants, Wellington, New Zealand, 13-17 August, 2006. | 2007

Fertility in high-producing dairy cows: reasons for decline and corrective strategies for sustainable improvement.

M.C. Lucy

The fertility of dairy cows has declined worldwide and this change is surprising given the importance of good fertility to the dairy industry. The decline in fertility can be explained by management changes within the dairy industry and also negative genetic correlations between milk production and reproduction. Four primary mechanisms that depress fertility in lactating cows are anovulatory and behavioral anestrus (failure to cycle and display estrus), suboptimal and irregular estrous cyclicity (this category includes ovarian disease and subnormal luteal function after breeding), abnormal preimplantation embryo development (may be secondary to poor oocyte quality), and uterine/placental incompetence. The solution for improving fertility in high-producing dairy cows will include both short-term and long-terms components. For the immediate short-term, using high fertility sires and implementing controlled breeding programs will help. Controlled breeding programs improve reproductive efficiency in confinement-style dairy herds and can be combined with post-insemination treatments to enhance fertility. An additional immediate short-term solution involves changing the diet so that dietary ingredients invoke hormonal responses that benefit the reproduction of the cow. The short-term solutions described above do not address the fundamental need for correcting the underlying genetics for reproduction in high-producing dairy cows. Crossbreeding will improve reproductive performance perhaps because it alleviates inbreeding and also lowers production in cows with an extreme high milk production phenotype. The current crisis in dairy reproduction will be permanently solved, however, when the genetics for dairy reproduction are improved through a balanced genetic selection strategy.


Theriogenology | 1994

The effect of a GnRH analogue on the dynamics of follicular development and synchronization of estrus in lactating cyclic dairy cows

D. Wolfenson; W.W. Thatcher; J.D. Savio; L. Badinga; M.C. Lucy

A GnRH analogue was used to synchronize ovarian follicular development prior to an injection of PGF(2alpha) for the synchronization of estrus in lactating Holstein cows. On Day 12 (estrus = Day 0) of the experimental cycle, cows (n = 8) were injected with 8 mug Buserelin (BUS group), followed by 25 mg PGF(2alpha) 7 d later (Day 19). Control cows (n = 7) received PGF(2alpha) on Day 12 (PGF group). Ovaries were scanned daily via ultrasonography, and plasma progesterone and estradiol concentrations were determined. Sizes of all visible follicles were recorded. Follicles were classified as small (3 to 5 mm), medium (6 to 9 mm), or large (> or = 10 mm). Between Days 12 and 16 of the cycle, the number of large follicles in PGF cows remained unchanged (1.2), whereas in the BUS group, the number of large follicles decreased from 1.3 on Day 12 to 0.5 on Day 15. Only 4 of 7 PGF cows ovulated a second-wave dominant follicle. In the BUS group, 7 of 8 cows ovulated a GnRH analogue induced dominant follicle that was first identified on Day 15. During the follicular phase (last 5 d prior to estrus), plasma progesterone declined in association with CL regression in both groups, and estradiol concentrations increased, reaching higher (P<.0.05) preovulatory peak concentration in BUS cows than in PGF cows (14.0 +/- 1.0 vs 10.4 +/- 1.1 pg/ml). The number of medium-size follicles was smaller and the number of small-size follicles tended to be higher in BUS cows than in the PGF-treated group. On the day of estrus, the size of the ovulatory follicle (16.1 vs 13.3 mm) and the size difference between the ovulatory and second largest follicle (11.4 vs 6.2 mm) were both larger in BUS cows than in PGF-treated cows, suggesting a more potent dominance effect of the ovulatory follicle in the BUS cows. This study suggests that a GnRH analogue can alter follicular development prior to synchronization of estrus with an injection of PGF(2alpha) in lactating dairy cows.


Domestic Animal Endocrinology | 1998

Follicular Dominance in Cattle Is Associated With Divergent Patterns of Ovarian Gene Expression for Insulin-Like Growth Factor (IGF)-I, IGF-II, and IGF Binding Protein-2 in Dominant and Subordinate Follicles

W. Yuan; Bagna Bao; H.A. Garverick; R. S. Youngquist; M.C. Lucy

A decrease in insulin-like growth factor (IGF) binding protein (BP) amount occurs within the follicular fluid of dominant ovarian follicles. At the same time, concentrations of follicular fluid IGF-I do not change. The mRNA for IGF-I, IGF-II, IGFBP-2, and IGFBP-3, in dominant and subordinate follicles were measured to determine if changes in IGF or IGFBP gene expression are associated with follicular dominance. Heifers were ovariectomized during a follicular wave, either during early-dominance (emerging dominant follicle, 9 mm diameter) or mid-dominance (established dominant follicle, 14-16 mm diameter). Follicles were classified as either dominant (DF), subordinate (SF), or not-recruited (NRF; small antral follicles). mRNA was localized by in situ hybridization and measured by image analyses. The IGF-I mRNA (granulosa cells) was greatest in DF and increased in DF, SF, and NRF from early- to mid-dominance. Likewise, IGF-II mRNA (theca cells) was greatest in DF compared with SF or NRF. The IGFBP-2 mRNA (granulosa cells), however, was nearly undetectable in DF, whereas adjacent SF expressed abundant IGFBP-2 mRNA. The NRF were not uniform in their IGFBP-2 expression because only 5 of 13 NRF had IGFBP-2 mRNA. The IGFBP-3 mRNA (granulosa cells) was found only in two NRF, suggesting that local synthesis is not a predominant source of follicular fluid IGFBP-3. These data show that changes in gene expression for IGFBP-2 are opposite to those for IGF-I or IGF-II. Increased IGF-I and IGF-II mRNA and decreased IGFBP-2 mRNA within the DF may be one mechanism leading to follicular dominance. The opposite pattern of IGFBP-2 gene expression in SF and some NRF may lead to follicular atresia.


Journal of Dairy Science | 2009

Somatotropic axis components and nutrient partitioning in genetically diverse dairy cows managed under different feed allowances in a pasture system

M.C. Lucy; G.A. Verkerk; B.E. Whyte; K.A. Macdonald; L. Burton; Raymond T. Cursons; J.R. Roche; C. W. Holmes

The somatotropic axis [including growth hormone (GH), GH receptor, and insulin-like growth factor (IGF)-I] is uncoupled in high-producing cows in early lactation so that the liver fails to respond to GH and produces less IGF-I. This uncoupling was implicated in the process of nutrient partitioning, enabling high milk production. Different genetic selection goals may affect functional components of the somatotropic axis. Thus, the somatotropic axis was examined in diverse genetic strains of dairy cows [North American Holstein 1990 (NA90), New Zealand Holstein-Friesian 1990 (NZ90), and New Zealand Holstein-Friesian 1970 (NZ70)] that were managed similarly within a pasture-based system but were offered feed allowances commensurate with their genetic ability to produce milk. The NA90 cows produced more milk (26.2 +/- 0.3, 24.1 +/- 0.3, and 20.1 +/- 0.4 kg/d, for NA90, NZ90, and NZ70, respectively), but had lower milk fat percentages (4.28 +/- 0.03, 4.69 +/- 0.03, and 4.58 +/- 0.04 kg/d for NA90, NZ90, and NZ70, respectively) compared with both NZ strains. Milk protein percentages (3.38 +/- 0.02, 3.52 +/- 0.02, and 3.29 +/- 0.03 kg/d for NA90, NZ90, and NZ70, respectively) were greater for NZ90 cows. During early lactation (wk 2 to 6), the total net energy produced in milk was greater in NA90 compared with NZ90 or NZ70 cows, but total net energy in milk after wk 6 was equivalent for NA90 and NZ90 cows. The greater milk production in early lactation in NA90 cows was associated with lower body condition scores (BCS; 1 to 10 scale; 4.0 +/- 0.1) elevated blood GH concentrations (1.6 +/- 0.1 ng/mL), and low blood IGF-I concentrations (14.8 +/- 1.1 ng/mL), indicating an uncoupled somatotropic axis. In comparison, the NZ70 cows retained a coupled somatotropic axis during early lactation, maintaining greater BCS (4.6 +/- 0.1), lower blood GH (0.7 +/- 0.1 ng/mL), and greater blood IGF-I (21.9 +/- 1.2 ng/mL). The degree of uncoupling in NZ90 cows was intermediate between the other 2 strains. Additional feed allowance failed to change blood IGF-I concentrations in NA90 cows but increased IGF-I concentrations in NZ90 cows (20.9 +/- 1.4 and 13.2 +/- 1.4 ng/mL for the high and low feed allowance, respectively). Furthermore, additional feed allowance in NZ90 cows lessened BCS loss in early lactation, but did not affect BCS loss in NA90 cows. Functional components of the somatotropic axis differed for the respective strains and were consistent with strain differences in milk production, BCS, and feed allowance.


Biology of Reproduction | 2000

Growth and the Initiation of Steroidogenesis in Porcine Follicles Are Associated with Unique Patterns of Gene Expression for Individual Componentsof the Ovarian Insulin-Like Growth Factor System

Jiazhong Liu; Anne T. Koenigsfeld; Thomas C. Cantley; Cynthia K. Boyd; Yasuhiro Kobayashi; M.C. Lucy

Abstract Ovarian follicular growth and steroidogenesis are controlled by the interaction of insulin-like growth factors (IGFs) and gonadotropins. The objective was to determine the temporal and spatial relationships for gonadotropin receptor, steroidogenic enzyme, and IGF system gene expression during the development of preovulatory porcine follicles. Sows (n = 18) were weaned and follicles were monitored by transrectal ultrasonography. Ovaries were collected from sows when the mean diameter of the preovulatory follicular cohort was approximately 2, 4, 6, or 8 mm. mRNA were measured by in situ hybridization for individual follicles within the preovulatory cohort (3 to 5 follicles per sow). Patterns of gene expression detected by in situ hybridization were confirmed by RNase protection analyses of pooled RNA samples. The amount of LH receptor mRNA and steroidogenic enzyme mRNA (17α-hydroxylase and aromatase) increased as the mean diameter of the follicular cohort increased from 2 to 6 mm, but then decreased abruptly for 8-mm follicles. Estradiol concentrations in follicular fluid closely followed the expression patterns of steroidogenic enzymes and LH receptor mRNA. FSH receptor mRNA was present in cohorts of 2-mm follicles but declined in 4-mm follicles and was undetectable in 6- and 8-mm follicles. The expression of IGF-I and type I IGF receptor mRNA were similar for follicles of 2, 4, 6, and 8 mm. In contrast, IGF-II mRNA progressively increased in follicles collected from 2-, 4-, and 6-mm cohorts, and then decreased slightly at 8 mm. Type II IGF receptor mRNA was greatest in 8-mm follicles. IGF binding protein-2 (BP-2) mRNA decreased as follicles achieved progressively larger sizes during the preovulatory period (2 to 8 mm), whereas the IGFBP-4 mRNA remained relatively low for follicles in 2- to 6-mm cohorts but then increased markedly in 8-mm follicles. In summary, temporal and spatial patterns of gene expression for gonadotropin receptor, steroidogenic enzyme, and IGF system genes were characterized in preovulatory porcine follicles by using in situ hybridization and RNase protection analyses. The unique patterns of gene expression suggest interdependence among specific genes that may be essential for preovulatory follicular development.


Journal of Biological Chemistry | 1999

Isolation and Characterization of a Novel Promoter for the Bovine Growth Hormone Receptor Gene

Honglin Jiang; Carol S. Okamura; M.C. Lucy

The use of alternative promoters represents an important mechanism for the regulation of growth hormone receptor (GHR) gene expression. Two promoters have been isolated previously for the GHR gene: the P1 promoter that drives liver-specific expression, and the P2 promoter that drives ubiquitous expression. In the present study, we isolated a third GHR promoter termed P3. The P3 promoter was GC-rich and TATA-less. The P3 promoter was able to drive the expression of a luciferase reporter gene in cell lines Hep G2, PLC/PRF/5, and BHK-21. In vivo, the P3 promoter initiated transcription from two major sites in exon 1C of the GHR gene in many tissues. In the adult bovine liver, the P3-transcribed GHR mRNA represented only 10% of the total GHR mRNA pool. In non-hepatic tissues such as kidney, skeletal muscle, mammary gland, and uterus, P3-transcribed GHR mRNA represented 30–40% of the total GHR mRNA pool. Within the bovine GHR gene, the P3 promoter was located immediately downstream from the P2 promoter. In transfected cells, the P2 promoter served as an enhancer for the P3 promoter. Existence and co-regulation of two ubiquitous promoters may be a mechanism for achieving a high level of expression of the GHR gene in multiple tissues.


Biology of Reproduction | 2001

Interaction of Endophyte-Infected Fescue and Heat Stress on Ovarian Function in the Beef Heifer

J.M. Burke; D.E. Spiers; F.N. Kojima; G.A. Perry; B E Salfen; S.L. Wood; D. J. Patterson; M. F. Smith; M.C. Lucy; W.G. Jackson; E.L. Piper

Abstract The objective of the experiment was to examine the interaction of endophyte-infected tall fescue and environmental temperature on follicular and luteal development and function in beef heifers. Heifers were fed endophyte-free or endophyte-infected tall fescue seed at thermoneutral or heat stress temperatures (n = 6/treatment) 4 wk before and 3 wk after synchronized ovulation. All heifers were subjected to thermoneutral conditions (19°C, 50% relative humidity) from Days −7 to −2; temperature increased incrementally from Days −1 to 0 and cycled between 25°C and 31°C between Days 1 and 20 for heat-stressed heifers. Serum was collected and ovaries monitored every other day after induced luteolysis between Days 1 and 23 or until ovulation. Size and location of follicles >4 mm and corpora lutea were recorded. Serum concentrations of prolactin were reduced in heat-stressed heifers fed infected seed and both heat stress and infected seed decreased total cholesterol. Rectal temperature and respiration rate were greatest in heifers fed the infected seed when exposed to maximal temperatures. Heat stress led to reduced diameter of the corpus luteum and serum progesterone compared with thermoneutral conditions. Progesterone was reduced more so in heifers fed infected seed. The combination of infected seed and heat stress was associated with reduced diameter of the preovulatory dominant follicle, and consumption of infected seed led to fewer large follicles during the estrous cycle. Both stressors led to reduced serum estradiol. Impaired follicle function may explain reduced pregnancy rates commonly observed in heifers grazing infected tall fescue pasture.


Journal of Dairy Science | 2013

Concentrations of nonesterified fatty acids and glucose in blood of periparturient dairy cows are indicative of pregnancy success at first insemination

H.A. Garverick; M.N. Harris; R. Vogel-Bluel; J.D. Sampson; J. Bader; W. R. Lamberson; J.N. Spain; M.C. Lucy; R. S. Youngquist

Greater blood concentrations of nonesterified fatty acids (NEFA) and lesser blood concentrations of glucose are indicative of the normal process of nutrient partitioning that occurs in early postpartum dairy cows. The objective was to determine the relationship between blood NEFA and glucose concentrations and subsequent conception at first insemination in postpartum dairy cows. Holstein (n=148) and Guernsey (n=8) dairy cows were blood sampled at approximately d 10, 7, and 3 prepartum, on the day of calving and 3, 7, 14, and 21 d postpartum for measurement of NEFA and glucose concentrations. Serum and plasma were harvested and used for measurement of NEFA and glucose concentrations, respectively. Cows were given a presynchronization treatment (2 injections of PGF(2α) 14 d apart) with the second PGF(2α) injection occurring 14 d before the initiation of the timed AI (TAI) protocol. Blood for determination of progesterone concentrations was collected at each presynchronization injection and at the initiation of the TAI protocol that was used for first insemination (74±7 d postpartum). Cows were considered noncycling if serum progesterone concentrations at the 2 presynchronization PGF(2α) injections (d 37 and 51±7 postpartum) and at the initiation of the TAI protocol (d 65±7 postpartum) were ≤1 ng/mL, and there was no indication of ovulation or presence of a corpus luteum by ultrasound examination at the initiation of the TAI protocol. Pregnancy was determined at 33 d and again at 61 d after first insemination by using ultrasound. Across all days, serum NEFA and plasma glucose concentrations were not different between cows that ovulated before the initiation of the TAI program (cycling) compared with those that did not ovulate (noncycling). Serum NEFA concentrations, however, were less and plasma glucose concentrations were greater during the early postpartum period for cows that subsequently became pregnant at first insemination compared with those that failed to become pregnant. Logistic regressions were used to predict the probability of pregnancy based on NEFA and glucose concentrations from individual days. The prediction with the greatest likelihood ratio was for d 3 postpartum NEFA and glucose concentrations. Nutritional status during the early postpartum period (within 1 wk after calving), as indicated by blood NEFA and glucose concentrations, may affect subsequent fertility by a mechanism that is independent from interval to first ovulation.

Collaboration


Dive into the M.C. Lucy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. F. Smith

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.E. Poock

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.M. Newsom

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.C. Green

University of Missouri

View shared research outputs
Researchain Logo
Decentralizing Knowledge