Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Caley is active.

Publication


Featured researches published by M. Caley.


Nature Reviews Clinical Oncology | 2011

Bone metastasis in prostate cancer: emerging therapeutic strategies

Justin Sturge; M. Caley; Jonathan Waxman

Metastatic bone disease (MBD) in advanced-stage cancer increases the risk of intractable bone pain, pathological skeletal fracture, spinal-cord compression and decreased survival. The disease manifestation course during MBD is largely driven by homotypic and heterotypic cellular interactions between invading tumor cells, osteoblasts and osteoclasts. The outcome is a sustained vicious cycle of bone matrix remodeling. Osteoclast-mediated bone degradation and subsequent bone loss are the hallmarks of secondary bone metastases from most solid tumors. An additional complication in prostate cancer is the predominance of osteosclerotic lesions typified by inappropriate bone production. Successful therapeutic strategies for the treatment of osteolytic MBD include the administration of intravenous bisphosphonates or subcutaneous inhibitors of receptor activator of nuclear factor κB ligand (RANKL). Inhibitors of SRC and cABL kinases and cathepsin K are under clinical investigation as potential anti-osteolytics. In contrast to the rapid progress being made in the development of anti-osteolytic therapies, the treatment of osteosclerotic MBD remains restricted to palliative radiotherapy for symptomatic solitary lesions and systemic taxane-based chemotherapy for widespread multiple lesions. This Review discusses the complex pathology of bone lesions in metastatic castration-resistant prostate cancer and focuses on new therapeutic strategies and targets that are emerging in preclinical studies.


Cell and Tissue Research | 2013

Matrix metalloproteinases and epidermal wound repair.

V. Martins; M. Caley; Edel A. O’Toole

Epidermal wound healing is a complex and highly coordinated process where several different cell types and molecules, such as growth factors and extracellular matrix (ECM) components, play an important role. Among the many proteins that are essential for the restoration of tissue integrity is the metalloproteinase (MMP) family. MMPs can act on ECM and non-ECM components affecting degradation and modulation of the ECM, growth-factor activation and cell–cell and cell–matrix signalling. MMPs are secreted by different cell types such as keratinocytes, fibroblasts and inflammatory cells at different stages and locations during wound healing, thereby regulating this process in a very coordinated and controlled way. In this article, we review the role of MMPs and their inhibitors (TIMPs), as well as the disintegrin and metalloproteinase with the thrombospondin motifs (ADAMs) family, in epithelial wound repair.


Nucleic Acids Research | 2013

miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts

Loredana Pellegrino; Justin Stebbing; Vania M. M. Braga; Adam E. Frampton; Jimmy Jacob; Lakjaya Buluwela; Long R. Jiao; Manikandan Periyasamy; Chris D. Madsen; M. Caley; Silvia Ottaviani; Laura Roca-Alonso; Mona El-Bahrawy; R. Charles Coombes; Jonathan Krell; Leandro Castellano

Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility.


Developmental Cell | 2016

Maternal DNA Methylation Regulates Early Trophoblast Development.

Miguel R. Branco; Michelle R. King; Vicente Perez-Garcia; Aaron B. Bogutz; M. Caley; Elena Fineberg; Louis Lefebvre; Simon J. Cook; Wendy Dean; Myriam Hemberger; Wolf Reik

Summary Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms.


Oncogene | 2014

The receptor tyrosine kinase Axl regulates cell–cell adhesion and stemness in cutaneous squamous cell carcinoma

M A Cichoń; Z Szentpetery; M. Caley; E S Papadakis; Ian C. Mackenzie; Caroline H. Brennan; Edel A. O'Toole

Axl is a receptor tyrosine kinase (RTK) upregulated in various tumors including cutaneous squamous cell carcinoma (SCC). Axl expression correlates with poor prognosis and induction of epithelial–mesenchymal transition (EMT), hence we hypothesized that Axl is involved in the disruption of cell–cell adhesion to allow invasion and chemotherapy resistance of the cancer stem cell population. Cutaneous SCC cell lines with stable knockdown of Axl were generated using retroviral vectors. Axl depletion altered expression of intercellular junction molecules increasing cell–cell adhesion with downregulation of Wnt and TGFβR signaling. Furthermore, Axl expression correlated with the expression of putative cancer stem cell markers, CD44 and ALDH1, increased resistance to chemotherapy drugs, enhanced sphere formation ability and expression of EMT features by cancer stem cells. Axl depletion resulted in loss of tumor formation in an in vivo zebrafish xenograft model. In conclusion, these data suggest that abrogation of Axl results in loss of cancer stem cell properties indicating a role for Axl as a therapeutic target in chemotherapy-resistant cancer.


The Journal of Pathology | 2015

AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

Mercedes Rodriguez-Teja; Julian H. Gronau; Claudia Breit; Yu Zhi Zhang; Ai Minamidate; M. Caley; Afshan McCarthy; Thomas R. Cox; Janine T. Erler; Luke Gaughan; Steven Darby; Craig N. Robson; Francesco Mauri; Jonathan Waxman; Justin Sturge

Biomechanical strain imposed by age‐related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end‐product (AGE)‐dependent non‐enzymatic crosslinking of its major components, collagen IV and laminin. We used this model to demonstrate that antibody targeted blockade of CTLD2, the second of eight C‐type lectin‐like domains in Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) that can recognize glycosylated collagens, reversed actinomyosin‐based contractility [myosin‐light chain‐2 (MLC2) phosphorylation], loss of cell polarity, loss of cell–cell junctions, luminal infiltration and basal invasion induced by AGE‐modified basal lamina matrix in PEC acini. Our in vitro results were concordant with luminal occlusion of acini in the prostate glands of adult Endo180ΔEx2–6/ΔEx2–6 mice, with constitutively exposed CTLD2 and decreased survival of men with early (non‐invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE‐dependent modification of the basal lamina induces invasive behaviour in non‐transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors. Copyright


Journal of the National Cancer Institute | 2016

Suppression of TGFβ and Angiogenesis by Type VII Collagen in Cutaneous SCC

V. Martins; M. Caley; Kate M. Moore; Z Szentpetery; S. Marsh; Dédée F. Murrell; Minhee Kim; M Avari; John A. McGrath; R. Cerio; Atte Kivisaari; Veli-Matti Kähäri; Kairbaan Hodivala-Dilke; Caroline H. Brennan; Mei Chen; John Marshall; Edel A. O'Toole

BACKGROUND Individuals with severe generalized recessive dystrophic epidermolysis bullosa (RDEB), an inherited blistering disorder caused by mutations in the COL7A1 gene, develop unexplained aggressive squamous cell carcinomas (SCC). Here we report that loss of type VII collagen (Col7) in SCC results in increased TGFβ signaling and angiogenesis in vitro and in vivo. METHODS Stable knockdown (KD) of Col7 was established using shRNA, and cells were used in a mouse xenograft model. Angiogenesis was assessed by immunohistochemistry, endothelial tube-forming assays, and proteome arrays. Mouse and zebrafish models were used to examine the effect of recombinant Col7 on angiogenesis. Findings were confirmed in anonymized, archival human tissue: RDEB SCC tumors, non-EB SCC tumors, RDEB skin, normal skin; and two human RDEB SCC cell lines. The TGFβ pathway was examined using immunoblotting, immunohistochemistry, biochemical inhibition, and siRNA. All statistical tests were two-sided. RESULTS Increased numbers of cross-cut blood vessels were observed in Col7 KD compared with control xenografts (n = 4 to 7 per group) and in RDEB tumors (n = 21) compared with sporadic SCC (n = 24, P < .001). Recombinant human Col7 reversed the increased SCC angiogenesis in Col7 KD xenografts in vivo (n = 7 per group, P = .04). Blocking the interaction between α2β1 integrin and Col7 increased TGFB1 mRNA expression 1.8-fold and p-Smad2 levels two-fold. Increased TGFβ signaling and VEGF expression were observed in Col7 KD xenografts (n = 4) compared with control (n = 4) and RDEB tumors (TGFβ markers, n = 6; VEGF, n = 17) compared with sporadic SCC (TGFβ markers, n = 6; VEGF, n = 21). Inhibition of TGFβ receptor signaling using siRNA resulted in decreased endothelial cell tube formation (n = 9 per group, mean tubes per well siC = 63.6, SD = 17.1; mean tubes per well siTβRII = 29.7, SD = 6.1, P = .02). CONCLUSIONS Type VII collagen suppresses TGFβ signaling and angiogenesis in cutaneous SCC. Patients with RDEB SCC may benefit from anti-angiogenic therapy.


Molecular Cancer Therapeutics | 2015

A Novel Fully Humanized 3D Skin Equivalent to Model Early Melanoma Invasion

David S. Hill; Neil D.P. Robinson; M. Caley; Mei Chen; Edel A. O'Toole; Jane L. Armstrong; Stefan Przyborski; Penny E. Lovat

Metastatic melanoma remains incurable, emphasizing the acute need for improved research models to investigate the underlying biologic mechanisms mediating tumor invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully humanized three-dimensional (3D) skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumor invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates that this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth-phase melanoma invasion. Mol Cancer Ther; 14(11); 2665–73. ©2015 AACR.


The Journal of Pathology | 2012

TGFβ1-Endo180-dependent collagen deposition is dysregulated at the tumour-stromal interface in bone metastasis.

M. Caley; Giolanta Kogianni; Adam Adamarek; Julian H. Gronau; Mercedes Rodriguez-Teja; Ana-Violeta Fonseca; Francesco Mauri; Ann Sandison; Johng S. Rhim; Carlo Palmieri; Justin Cobb; Jonathan Waxman; Justin Sturge

Cellular niches in adult tissue can harbour dysregulated microenvironments that become the driving force behind disease progression. The major environmental change when metastatic cells arrive in the bone is the destruction of mineralized type I collagen matrix. Once metastatic niches establish in bone, the invading tumour cells initiate a vicious cycle of osteolytic lesion formation via the dysregulation of paracrine signals and uncoupling of normal bone resorption and production. Here we report that the collagen receptor Endo180 (CD280, MRC2, uPARAP) participates in collagen deposition by primary human osteoblasts during de novo osteoid formation. This newly recognized function of Endo180 was suppressed in osteoblasts following heterotypic direct cell–cell contact in co‐culture with prostate tumour cells. Reciprocal Endo180 up‐regulation in osteolytic prostate tumour cells (PC3 and DU145) followed their direct contact with osteoblasts and promoted de novo collagen internalization, which is a previously characterized function of the constitutively recycling Endo180 receptor. The osteoblastic suppression and tumour cell‐associated enhancement of Endo180 expression were equally sustained in these direct co‐cultures. These findings are the first to demonstrate that increased tumour cell participation in collagen degradation and decreased collagen formation by osteoblasts in the osteolytic microenvironment are linked to the divergent regulation of a collagen‐binding receptor. Immunohistochemical analysis of core biopsies from bone metastasis revealed higher levels of Endo180 expression in tumour cell foci than cells in the surrounding stroma. Additional experiments in prostate cell–osteoblast co‐cultures indicate that divergent regulation of Endo180 is the result of dysregulated TGFβ1 signalling. The findings of this study provide a rationale for targeting collagen remodelling by Endo180 in bone metastases and other collagen matrix pathologies. Copyright


British Journal of Cancer | 2013

Endo180 modulation by bisphosphonates and diagnostic accuracy in metastatic breast cancer.

Carlo Palmieri; M. Caley; Purshouse K; Fonseca Av; Mercedes Rodriguez-Teja; Giolanta Kogianni; Laura Woodley; K. M. Elliott; Jonathan Waxman; Justin Sturge

Background:Endo180 (CD280; MRC2; uPARAP)-dependent collagen remodelling is dysregulated in primary tumours and bone metastasis. Here, we confirm the release and diagnostic accuracy of soluble Endo180 for diagnosing metastasis in breast cancer (BCa).Methods:Endo180 was quantified in BCa cell conditioned medium and plasma from BCa patients stratified according to disease status and bisphosphonate treatment (n=88). All P-values are from two-sided tests.Results:Endo180 is released by ectodomain shedding from the surface of MCF-7 and MDA-MB-231 BCa cell lines. Plasma Endo180 was significantly higher in recurrent/metastatic (1.71±0.87; n=59) vs early/localised (0.92±0.37; n=29) BCa (P<0.0001). True/false-positive rates for metastasis classification were: 85%/50% for the reference standard, CA 15-3 antigen (28 U ml−1); ⩽97%/⩾36% for Endo180; and ⩽97%/⩾32% for CA 15-3 antigen+Endo180. Bisphosphonate treatment was associated with reduced Endo180 levels in BCa patients with bone metastasis (P=0.011; n=42). True/false-positive rates in bisphosphonate-naive patients (n=57) were: 68%/45% for CA 15-3 antigen; ⩽95%/⩾20% for Endo180; and ⩽92%/⩾21% for CA 15-3 antigen+Endo180.Conclusion:Endo180 is a potential marker modulated by bisphosphonates in metastatic BCa.

Collaboration


Dive into the M. Caley's collaboration.

Top Co-Authors

Avatar

Edel A. O’Toole

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

V. Martins

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Edel A. O'Toole

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Marsh

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate M. Moore

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge