Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.-Carmen Estevez is active.

Publication


Featured researches published by M.-Carmen Estevez.


Analytica Chimica Acta | 2014

Trends and challenges of refractometric nanoplasmonic biosensors: a review.

M.-Carmen Estevez; Marinus A. Otte; Borja Sepúlveda; Laura M. Lechuga

Motivated by potential benefits such as sensor miniaturization, multiplexing opportunities and higher sensitivities, refractometric nanoplasmonic biosensing has profiled itself in a short time span as an interesting alternative to conventional Surface Plasmon Resonance (SPR) biosensors. This latter conventional sensing concept has been subjected during the last decades to strong commercialization, thereby strongly leaning on well-developed thin-film surface chemistry protocols. Not surprisingly, the examples found in literature based on this sensing concept are generally characterized by extensive analytical studies of relevant clinical and diagnostic problems. In contrast, the more novel Localized Surface Plasmon Resonance (LSPR) alternative finds itself in a much earlier, and especially, more fundamental stage of development. Driven by new fabrication methodologies to create nanostructured substrates, published work typically focuses on the novelty of the presented material, its optical properties and its use - generally limited to a proof-of-concept - as a label-free biosensing scheme. Given the different stages of development both SPR and LSPR sensors find themselves in, it becomes apparent that providing a comparative analysis of both concepts is not a trivial task. Nevertheless, in this review we make an effort to provide an overview that illustrates the progress booked in both fields during the last five years. First, we discuss the most relevant advances in SPR biosensing, including interesting analytical applications, together with different strategies that assure improvements in performance, throughput and/or integration. Subsequently, the remaining part of this work focuses on the use of nanoplasmonic sensors for real label-free biosensing applications. First, we discuss the motivation that serves as a driving force behind this research topic, together with a brief summary that comprises the main fabrication methodologies used in this field. Next, the sensing performance of LSPR sensors is examined by analyzing different parameters that can be invoked in order to quantitatively assess their overall sensing performance. Two aspects are highlighted that turn out to be especially important when trying to maximize their sensing performance, being (1) the targeted functionalization of the electromagnetic hotspots of the nanostructures, and (2) overcoming inherent negative influence that stem from the presence of a high refractive index substrate that supports the nanostructures. Next, although few in numbers, an overview is given of the most exhaustive and diagnostically relevant LSPR sensing assays that have been recently reported in literature, followed by examples that exploit inherent LSPR characteristics in order to create highly integrated and high-throughput optical biosensors. Finally, we discuss a series of considerations that, in our opinion, should be addressed in order to bring the realization of a stand-alone LSPR biosensor with competitive levels of sensitivity, robustness and integration (when compared to a conventional SPR sensor) much closer to reality.


Sensors | 2014

Direct detection of protein biomarkers in human fluids using site-specific antibody immobilization strategies.

Maria Soler; M.-Carmen Estevez; Mar Álvarez; Marinus A. Otte; Borja Sepúlveda; Laura M. Lechuga

Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.


Biosensors and Bioelectronics | 2015

Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.

Maria Soler; Pablo Mesa-Antunez; M.-Carmen Estevez; Antonio Jesus Ruiz-Sanchez; Marinus A. Otte; Borja Sepúlveda; Daniel Collado; Cristobalina Mayorga; Maria J. Torres; Ezequiel Perez-Inestrosa; Laura M. Lechuga

A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patients serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patients serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples.


Talanta | 2015

Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin

Adrian Losoya-Leal; M.-Carmen Estevez; Sergio O. Martinez-Chapa; Laura M. Lechuga

The therapeutic drug monitoring (TDM) of pharmaceutical drugs with narrow therapeutic ranges is of great importance in the clinical setting. It provides useful information towards the enhancement of drug therapies, aiding in dosage control and toxicity risk management. Amikacin is an aminoglycoside antibiotic commonly used in neonatal therapies that is indicated for TDM due to the toxicity risks inherent in its use. Current techniques for TDM such as high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) are costly, time consuming, and cannot be performed at the site of action. Over the last decades, surface plasmon resonance (SPR) biosensors have become increasingly popular in clinical diagnostics due to their ability to detect biomolecular interactions in real-time. We present an SPR-based competitive immunoassay for the detection of the antibiotic amikacin, suitable for TDM in both adults and neonates. We have obtained high specificity and sensitivity levels with an IC50 value of 1.4ng/mL and a limit of detection of 0.13ng/mL, which comfortably comply with the drugs therapeutic range. Simple dilution of serum can therefore be sufficient to analyze low-volume real samples from neonates, increasing the potential of the methodology for TDM. Compared to current TDM conventional methods, this SPR-based immunoassay can provide advantages such as simplicity, potential portability, and label-free measurements with the possibility of high throughput. This work is the foundation towards the development of an integrated, simple use, highly sensitive, fast, and point-of-care sensing platform for the opportune TDM of antibiotics and other drugs in a clinical setting.


ACS Nano | 2011

Guiding light in monolayers of sparse and random plasmonic meta-atoms.

Marinus A. Otte; M.-Carmen Estevez; David Regatos; Laura M. Lechuga; Borja Sepúlveda

Encouraged by the capacity of surface plasmons to confine and propagate electromagnetic fields, waveguiding concepts have been developed, including combinations of continuous metal films or ordered arrays of metal nanoparticles. So far, waveguiding in the latter systems has been based on near-field or diffractive coupling. Herein, we show that monolayers of sparse and disordered gold nanoparticles support a novel transverse-electric guided mode that, contrary to previous work, relies on the strong enhancement of the polarizability upon excitation of the nanoparticle LSPR, creating an effective refractive index sufficiently high to support light guidance over a large range of frequencies. Excitation of this guided mode offers interesting nanophotonics features and applications such as a tunable total absorption spectral band, attractive for light harvesting applications, or the generation of a large amplification of the sensitivity to changes of refractive index accompanied with striking enhancement of the limit of detection in real biosensing experiments.


Nanophotonics | 2017

Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration

Gerardo A. Lopez; M.-Carmen Estevez; Maria Soler; Laura M. Lechuga

Abstract Motivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.


Biosensors and Bioelectronics | 2016

Label-free SPR detection of gluten peptides in urine for non-invasive celiac disease follow-up

Maria Soler; M.-Carmen Estevez; María de Lourdes Moreno; Angel Cebolla; Laura M. Lechuga

Motivated by the necessity of new and efficient methods for dietary gluten control of celiac patients, we have developed a simple and highly sensitive SPR biosensor for the detection of gluten peptides in urine. The sensing methodology enables rapid and label-free quantification of the gluten immunogenic peptides (GIP) by using G12 mAb. The overall performance of the biosensor has been in-depth optimized and evaluated in terms of sensitivity, selectivity and reproducibility, reaching a limit of detection of 0.33 ng mL(-1). Besides, the robustness and stability of the methodology permit the continuous use of the biosensor for more than 100 cycles with excellent repeatability. Special efforts have been focused on preventing and minimizing possible interferences coming from urine matrix enabling a direct analysis in this fluid without requiring extraction or purification procedures. Our SPR biosensor has proven to detect and identify gluten consumption by evaluating urine samples from healthy and celiac individuals with different dietary gluten conditions. This novel biosensor methodology represents a novel approach to quantify the digested gluten peptides in human urine with outstanding sensitivity in a rapid and non-invasive manner. Our technique should be considered as a promising opportunity to develop Point-of-Care (POC) devices for an efficient, simple and accurate gluten free diet (GFD) monitoring as well as therapy follow-up of celiac disease patients.


Analytical Letters | 2007

A New Methodology for the Rational Design of Molecularly Imprinted Polymers

J.-Pablo Salvador; M.-Carmen Estevez; M.-Pilar Marco; Francisco Sánchez-Baeza

Abstract A new rational approach for the preparation of Molecularly Imprinted Polymers (MIPs) based in combined data from computational chemistry models calculations and 1H‐NMR experimental data is described. The new method has been checked using the case of MIPs for testosterone. The experimental NMR binding data between potential monomers and the testosterone and the computational models yield information to rationalize the composition of the polymerization mixture (monomer nature, ratio to template, amount of cross‐linker and porogen). The designed polymer was prepared and evaluated and the results confirm that the obtained material act as one could be expected for a MIP.


Biosensors and Bioelectronics | 2017

A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection

Gerardo A. López-Muñoz; M.-Carmen Estevez; E. Cristina Peláez-Gutierrez; Antoni Homs-Corbera; M. Carmen García-Hernandez; J. Ignacio Imbaud; Laura M. Lechuga

Nanostructure-based plasmonic biosensors have quickly positioned themselves as interesting candidates for the design of portable optical biosensor platforms considering the potential benefits they can offer in integration, miniaturization, multiplexing, and real-time label-free detection. We have developed a simple integrated nanoplasmonic sensor taking advantage of the periodic nanostructured array of commercial Blu-ray discs. Sensors with two gold film thicknesses (50 and 100nm) were fabricated and optically characterized by varying the oblique-angle of the incident light in optical reflectance measurements. Contrary to the use normal light incidence previously reported with other optical discs, we observed an enhancement in sensitivity and a narrowing of the resonant linewidths as the light incidence angle was increased, which could be related to the generation of Fano resonant modes. The new sensors achieve a figure of merit (FOM) up to 35 RIU-1 and a competitive bulk limit of detection (LOD) of 6.3×10-6 RIU. These values significantly improve previously reported results obtained with normal light incidence reflectance measurements using similar structures. The sensor has been combined with versatile, simple, ease to-fabricate microfluidics. The integrated chip is only 1cm2 (including a PDMS flow cell with a 50µm height microfluidic channel fabricated with double-sided adhesive tape) and all the optical components are mounted on a 10cm×10cm portable prototype, illustrating its facile miniaturization, integration and potential portability. Finally, to assess the label-free biosensing capability of the new sensor, we have evaluated the presence of specific antibodies against the GTF2b protein, a tumor-associate antigen (TAA) related to colorectal cancer. We have achieved a LOD in the pM order and have assessed the feasibility of directly measuring biological samples such as human serum.


Journal of Biophotonics | 2018

Gold/silver/gold trilayer films on nanostructured polycarbonate substrates for direct and label-free nanoplasmonic biosensing

Gerardo A. López-Muñoz; M.-Carmen Estevez; Marc Vázquez-García; Miguel Berenguel-Alonso; Julián Alonso-Chamarro; Antoni Homs-Corbera; Laura M. Lechuga

Ultrasmooth gold/silver/gold trilayer nanostructured plasmonic sensors were obtained using commercial Blu-ray optical discs as nanoslits-based flexible polymer substrates. A thin gold film was used as an adhesion and nucleation layer to improve the chemical stability and reduce the surface roughness of the overlying silver film, without increasing ohmic plasmon losses. The structures were physically and optically characterized and compared with nanostructures of single gold layer. Ultrasmooth and chemically stable trilayer nanostructures with a surface roughness <0.5 nm were obtained following a simple and reproducible fabrication process. They showed a figure of merit (FOM) value up to 69.2 RIU-1 which is significantly higher (more than 95%) than the gold monolayer counterpart. Their potential for biosensing was demonstrated by employing the trilayer sensor for the direct and refractometric (label-free) detection of C-reactive protein (CRP) biomarker in undiluted urine achieving a Limit of Detection (LOD) in the pM order.

Collaboration


Dive into the M.-Carmen Estevez's collaboration.

Top Co-Authors

Avatar

Maria Soler

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Borja Sepúlveda

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Angel Montoya

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Antoni Homs-Corbera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Borja Sepúlveda

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerardo A. López-Muñoz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge