Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M Carpentieri is active.

Publication


Featured researches published by M Carpentieri.


Environmental Pollution | 2011

An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles

M Carpentieri; Prashant Kumar; Alan Robins

Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified.


Boundary-Layer Meteorology | 2017

Measurements and Computations of Flow in an Urban Street System

Ian P. Castro; Zheng-Tong Xie; Vladimír Fuka; Alan Robins; M Carpentieri; Paul Hayden; Denise Hertwig; Omduth Coceal

We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognising that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those obtained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models.


Environmental Modelling and Software | 2004

Wind tunnel experiments of tracer dispersion downwind from a small-scale physical model of a landfill

M Carpentieri; Andrea Corti; Luca Zipoli

Wind tunnel experiments have been carried out on a small-scale physical model of a municipal waste landfill (MWL) in the CRIACIV (Research Centre of Building Aerodynamics and Wind Engineering) “environmental” wind tunnel in Prato (Italy). The MWL model simulates a landfill whose surface is higher than the surrounding surface, applying a 1:200 scaling factor. Modelling an area source such as landfill is a difficult task for numerical models due to turbulence phenomena that modifies the flow near the source increasing ground level concentration (GLC). For the specific task, a new set-up of the wind tunnel has been developed, with respect to previous studies carried out on line and point sources physical models. The tracer used in the experiments was ethylene, suitable for non-buoyant plume conditions, typical for MWL emissions. A detailed result database has been obtained in terms of GLC and concentration profiles as well as flow turbulence and velocity field characterisation.


Bulletin of the American Meteorological Society | 2017

Developing a research strategy to better understand, observe and simulate urban atmospheric processes at kilometre to sub-kilometre scales

Janet F. Barlow; M. J. Best; Sylvia I. Bohnenstengel; Peter A. Clark; Sue Grimmond; Humphrey W. Lean; Andreas Christen; Stefan Emeis; Martial Haeffelin; Ian N. Harman; Aude Lemonsu; Alberto Martilli; Eric R. Pardyjak; Mathias W. Rotach; Susan P. Ballard; Ian A. Boutle; A. R. Brown; Xiaoming Cai; M Carpentieri; Omduth Coceal; Ben Crawford; Silvana Di Sabatino; JunXia Dou; Daniel R. Drew; John M. Edwards; Joachim Fallmann; Krzysztof Fortuniak; Jemma Gornall; Tobias Gronemeier; Christos Halios

A Met Office/Natural Environment Research Council Joint Weather and Climate Research Programme workshop brought together 50 key international scientists from the UK and international community to formulate the key requirements for an Urban Meteorological Research strategy. The workshop was jointly organised by University of Reading and the Met Office.


Boundary-Layer Meteorology | 2018

Scalar fluxes near a tall building in an aligned array of rectangular buildings

Vladimír Fuka; Zheng-Tong Xie; Ian P. Castro; Paul Hayden; M Carpentieri; Alan Robins

Scalar dispersion from ground-level sources in arrays of buildings is investigated using wind-tunnel measurements and large-eddy simulation (LES). An array of uniform-height buildings of equal dimensions and an array with an additional single tall building (wind tunnel) or a periodically repeated tall building (LES) are considered. The buildings in the array are aligned and form long streets. The sensitivity of the dispersion pattern to small changes in wind direction is demonstrated. Vertical scalar fluxes are decomposed into the advective and turbulent parts and the influences of wind direction and of the presence of the tall building on the scalar flux components are evaluated. In the uniform-height array turbulent scalar fluxes are dominant, whereas the tall building produces an increase of the magnitude of advective scalar fluxes that yields the largest component. The presence of the tall building causes either an increase or a decrease to the total vertical scalar flux depending on the position of the source with respect to the tall building. The results of the simulations can be used to develop parametrizations for street-canyon dispersion models and enhance their capabilities in areas with tall buildings.


Environmental Pollution | 2018

Mean and turbulent mass flux measurements in an idealised street network

M Carpentieri; Alan Robins; Paul Hayden; Edoardo Santi

Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent component. They play a major role in the dispersion of gases in urban areas and modern mathematical models often attempt some sort of parametrisation. An experimental technique to measure mean and turbulent fluxes in an idealised urban array was developed and applied to improve our understanding of how the fluxes are distributed in a dense street canyon network. As expected, horizontal advective scalar fluxes were found to be dominant compared with the turbulent components. This is an important result because it reduces the complexity in developing parametrisations for street network models. On the other hand, vertical mean and turbulent fluxes appear to be approximately of the same order of magnitude. Building height variability does not appear to affect the exchange process significantly, while the presence of isolated taller buildings upwind of the area of interest does. One of the most interesting results, again, is the fact that even very simple and regular geometries lead to complex advective patterns at intersections: parametrisations derived from measurements in simpler geometries are unlikely to capture the full complexity of a real urban area.


Reviews in Environmental Science and Bio\/technology | 2013

Pollutant dispersion in the urban environment

M Carpentieri

Flow and pollutant dispersion models are important elements for managing air quality in urban areas, to complement and, sometimes, even substitute monitoring. Developing fast and reliable parameterisations is necessary to improve the spatial and temporal resolutions of current mathematical prediction models. Recently there has been a growing interest in the so-called “neighbourhood scale” models, that offer relatively high spatial and temporal resolutions while keeping the needed computational resources at a minimum. This paper describes experimental and numerical simulations performed to explore the interaction of flow and pollutant dispersion with local building and street geometry. The methods developed may be useful as a way for cities to improve air quality management.


Environmental Fluid Mechanics | 2018

Evaluation of fast atmospheric dispersion models in a regular street network

Denise Hertwig; Lionel Soulhac; Vladimír Fuka; Torsten Auerswald; M Carpentieri; Paul Hayden; Alan Robins; Zheng-Tong Xie; Omduth Coceal

The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (1) a Gaussian plume model, (2) a Lagrangian stochastic model and (3) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications.


Building Research and Information | 2018

Natural ventilation in cities: the implications of fluid mechanics

Jiyun Song; S. Fan; W. Lin; L. Mottet; H. Woodward; M. Davies Wykes; R. Arcucci; D. Xiao; J.-E. Debay; H.M. ApSimon; E. Aristodemou; David M. Birch; M Carpentieri; F. Fang; M. Herzog; G. R. Hunt; Roderic L. Jones; Christopher C. Pain; D. Pavlidis; Alan Robins; C. A. Short; P. F. Linden

ABSTRACT Research under the Managing Air for Green Inner Cities (MAGIC) project uses measurements and modelling to investigate the connections between external and internal conditions: the impact of urban airflow on the natural ventilation of a building. The test site was chosen so that under different environmental conditions the levels of external pollutants entering the building, from either a polluted road or a relatively clean courtyard, would be significantly different. Measurements included temperature, relative humidity, local wind and solar radiation, together with levels of carbon monoxide (CO) and carbon dioxide (CO2) both inside and outside the building to assess the indoor–outdoor exchange flows. Building ventilation took place through windows on two sides, allowing for single-sided and crosswind-driven ventilation, and also stack-driven ventilation in low wind conditions. The external flow around the test site was modelled in an urban boundary layer in a wind tunnel. The wind tunnel results were incorporated in a large-eddy-simulation model, Fluidity, and the results compared with monitoring data taken both within the building and from the surrounding area. In particular, the effects of street layout and associated street canyons, of roof geometry and the wakes of nearby tall buildings were examined.


Developments in environmental science | 2007

Poster 2 Wind tunnel experiments of flow and dispersion in idealised urban areas

M Carpentieri; Andrea Corti; Paolo Giambini

Publisher Summary This chapter presents the experiments that were performed in the CRIACIV (Research Centre for Building Aerodynamics and Wind Engineering) boundary layer wind tunnel (University of Florence), to study flow and pollutant dispersion in an idealized urban area. The issue was addressed at both the local (micro) and the neighborhood (intermediate) scales. The main objectives of these experiments were: (1) to evaluate the influence of an urban area on the “far-field” pollutant dispersion from a point source located upwind of the model, (2) to investigate the spatial variation of concentration associated with various typologies of urban areas with different morphological parameters, (3) to establish mechanism of flow and pollutant exchange between street canyons at urban intersections and between the urban canopy and the air flow above, and (4) to build an experimental database for the development and the validation of microscale and intermediate (neighborhood) scale mathematical models for urban areas.

Collaboration


Dive into the M Carpentieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian P. Castro

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimír Fuka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge