M. Cecilia Rousseaux
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Cecilia Rousseaux.
Oecologia | 1998
M. Cecilia Rousseaux; Carlos L. Ballaré; Ana L. Scopel; Peter S. Searles; Martyn M. Caldwell
We examined the effects of solar ultraviolet-B radiation (UVB) on plant-herbivore interactions in native ecosystems of the Tierra del Fuego National Park (southern Argentina), an area of the globe that is frequently under the Antarctic “ozone hole” in early spring. We found that filtering out solar UVB from the sunlight received by naturally-occurring plants of Gunnera magellanica, a creeping perennial herb, significantly increased the number of leaf lesions caused by chewing insects. Field surveys suggested that early-season herbivory was principally due to the activity of moth larvae (Lepidoptera: Noctuidae). Manipulative field experiments showed that exposure to solar UVB changes the attractiveness of G. magellanica leaf tissue to natural grazers. In a laboratory experiment, locally caught moth caterpillars tended to eat more tissue from leaves grown without UVB than from leaves exposed to natural UVB during development; however, the difference between treatments was not significant. Leaves grown under solar UVB had slightly higher N levels than leaves not exposed to UVB; no differences between UVB treatments in specific leaf mass, relative water content, and total methanol-soluble phenolics were detected. Our results show that insect herbivory in a natural ecosystem is influenced by solar UVB, and that this influence could not be predicted from crude measurements of leaf physical and chemical characteristics and a common laboratory bioassay.
Oecologia | 2004
M. Cecilia Rousseaux; Riitta Julkunen-Tiitto; Peter S. Searles; Ana L. Scopel; Pedro J. Aphalo; Carlos L. Ballaré
We examined the effects of solar ultraviolet-B (UV-B) radiation on plant-insect interactions in Tierra del Fuego (55°S), Argentina, an area strongly affected by ozone depletion because of its proximity to Antarctica. Solar UV-B under Nothofagus antarctica branches was manipulated using a polyester plastic film to attenuate UV-B (uvb−) and an Aclar film to provide near-ambient UV-B (uvb+). The plastic films were placed on both north-facing (i.e., high solar radiation in the Southern Hemisphere) and south-facing branches. Insects consumed 40% less leaf area from north- than from south-facing branches, and at least 30% less area from uvb+ branches than from uvb− branches. The reduced herbivory on leaves from uvb+ branches occurred for both branch orientations. Leaf mass per area increased and relative water content decreased on north- versus south-facing branches, while no differences were apparent between the UV-B treatments. Solar UV-B did lead to lower gallic acid concentration and higher flavonoid aglycone concentration in uvb+ leaves relative to uvb− leaves. Both the flavonoid aglycone and quercetin-3-arabinopyranoside were higher on north-facing branches. In laboratory preference experiments, larvae of the dominant insect in the natural community, Geometridae “Brown” (Lepidoptera), consumed less area from field-grown uvb+ leaves than from uvb− leaves in 1996–97, but not in 1997–98. Correlation analyses suggested that the reduction in insect herbivory in the field under solar UV-B may be mediated in part by the UV-B effects on gallic acid and flavonoid aglycone.
Photochemistry and Photobiology | 2004
M. Cecilia Rousseaux; Stephan D. Flint; Peter S. Searles; Martyn M. Caldwell
Abstract Field experiments assessing UV-B effects on plants have been conducted using two contrasting techniques: supplementation of solar UV-B with radiation from fluorescent UV lamps and the exclusion of solar UV-B with filters. We compared these two approaches by growing lettuce and oat simultaneously under three conditions: UV-B exclusion, near-ambient UV-B (control) and UV-B supplementation (simulating a 30% ozone depletion). This permitted computation of “solar UV-B” and “supplemental UV-B” effects. Microclimate and photosynthetically active radiation were the same under the two treatments and the control. Excluding UV-B changed total UV-B radiation more than did supplementing UV-B, but the UV-B supplementation contained more “biologically effective” shortwave radiation. For oat, solar UV-B had a greater effect than supplemental UV-B on main shoot leaf area and main shoot mass, but supplemental UV-B had a greater effect on leaf and tiller number and UV-B–absorbing compounds. For lettuce, growth and stomatal density generally responded similarly to both solar UV-B and supplemented UV-B radiation, but UV-absorbing compounds responded more to supplemental UV-B, as in oat. Because of the marked spectral differences between the techniques, experiments using UV-B exclusion are most suited to assessing effects of present-day UV-B radiation, whereas UV-B supplementation experiments are most appropriate for addressing the ozone depletion issue.
Crop & Pasture Science | 2009
Peter S. Searles; Diego A. Saravia; M. Cecilia Rousseaux
Several studies have evaluated many above-ground aspects of olive production, but essential root system characteristics have been little examined. The objective of our study was to evaluate root length density (RLD) and root distribution relative to soil water content in three commercial orchards (north-west Argentina). Depending on the orchard, the different drip emitter arrangements included either: (1) emitters spaced continuously at 1-m intervals along the drip line (CE-4; 4 emitters per tree); (2) 4 emitters per tree spaced at 1-m intervals, but with a space of 2 m between emitters of neighbouring trees (E-4); or (3) 2 emitters per tree with 4 m between emitters of neighbouring trees (E-2). All of the orchards included either var. Manzanilla fina or Manzanilla reina trees (5–8 years old) growing in sandy soils, although the specific characteristics of each orchard differed. Root length density values (2.5–3.5 cm/cm3) in the upper soil depth (0–0.5 m) were fairly uniform along the drip line in the continuous emitter (CE-4) orchard. In contrast, roots were more concentrated in the E-4 and E-2 orchards, in some cases with maximum RLD values of up to 7 cm/cm3. Approximately 70% of the root system was located in the upper 0.5 m of soil depth, and most of the roots were within 0.5 m of the drip line. For each of the three orchards, significant linear relationships between soil water content and RLD were detected based on 42 sampling positions that included various distances from the trunk and soil depths. Values of RLD averaged over the entire rooting zone and total tree root length per leaf area for the three orchards were estimated to range from 0.19 to 0.48 cm/cm3 and from 1.8 to 3.5 km/m2, respectively. These results should reduce the uncertainty associated with the magnitude of RLD values under drip irrigation as intensively managed olive orchards continue to expand in established and new growing regions.
Plant Ecology | 2003
Johann G. Zaller; Peter S. Searles; M. Cecilia Rousseaux; Stephan D. Flint; Martyn M. Caldwell; Osvaldo E. Sala; Carlos L. Ballaré; Ana L. Scopel
The objectives of this study were to test potential effects of solar ultraviolet-B (UV-B) radiation on (i) foliage nutritional quality and foliage decomposition rates of six plant species of this fen ecosystem (Nothofagus antarctica, Carex curta, C. decidua and C. magellanica; Acaena magellanica and Gunnera magellanica) and (ii) feeding preferences for these plant species of the slug Deroceras reticulatum prevalent in this ecosystem. In a mixed-diet selection slugs were offered leaves of the six species that had been grown for three years in experimental field plots under either near-ambient or reduced solar ultraviolet-B (UV-B) radiation. The chosen characteristics of leaf quality (nitrogen concentration, carbon:nitrogen ratio, specific leaf area) and leaf decomposition rates of the six species varied significantly among species but were not affected by the UV-B treatments. However, there were UV-B treatment effects on slug feeding preference for two plant species. For the tree species, Nothofagus, slugs had consumed only one-third as much foliage grown under near-ambient UV-B radiation as of foliage grown under reduced UV-B by the end of the feeding experiment. In contrast, leaves of the sedge C. decidua that had been grown under near-ambient UV-B were consumed twice as much as leaves grown under reduced UV-B radiation. Consumption of foliage for the other four species was similar for the two UV-B treatments. Additionally, diet selection of the slugs was also significantly affected by prior UV-B conditions under which foliage had been grown. Nothofagus leaves were consumed proportionately less and C. decidua proportionately more if the foliage had been grown under near-ambient UV-B radiation.
Frontiers in Plant Science | 2017
Mariela Torres; Pierluigi Pierantozzi; Peter S. Searles; M. Cecilia Rousseaux; G.P. García-Inza; Andrea Miserere; Romina Bodoira; Cibeles Contreras; Damián M. Maestri
Olive (Olea europaea L.) is a crop well adapted to the environmental conditions prevailing in the Mediterranean Basin. Nevertheless, the increasing international demand for olive oil and table olives in the last two decades has led to expansion of olive cultivation in some countries of the southern hemisphere, notably in Argentina, Chile, Perú and Australia. While the percentage of world production represented by these countries is still low, many of the new production regions do not have typical Mediterranean climates, and some are located at subtropical latitudes where there is relatively little information about crop function. Thus, the primary objective of this review was to assess recently published scientific literature on olive cultivation in these new crop environments. The review focuses on three main aspects: (a) chilling requirements for flowering, (b) water requirements and irrigation management, and (c) environmental effects on fruit oil concentration and quality. In many arid and semiarid regions of South America, temperatures are high and rainfall is low in the winter and early spring months compared to conditions in much of the Mediterranean Basin. High temperatures have often been found to have detrimental effects on olive flowering in many olive cultivars that have been introduced to South America, and a better understanding of chilling requirements is needed. Lack of rainfall in the winter and spring also has resulted in an urgent need to evaluate water requirements from the flower differentiation period in the winter to early fruit bearing. Additionally, in some olive growing areas of South America and Australia, high early season temperatures affect the timing of phenological events such that the onset of oil synthesis occurs sooner than in the Mediterranean Basin with most oil accumulation taking place in the summer when temperatures are very high. Increasing mean daily temperatures have been demonstrated to decrease fruit oil concentration (%) and negatively affect some aspects of oil quality based on both correlative field studies and manipulative experiments. From a practical standpoint, current findings could be used as approximate tools to determine whether the temperature conditions in a proposed new growing region are appropriate for achieving sustainable oil productivity and quality.
Ciência e Natura | 2007
Patricia I. Figuerola; Peter S. Searles; M. Cecilia Rousseaux
O objetivo deste estudo foi controlar a evaporacao de solo dopomar de azeitona irrigado de gotejamento em condicoes de solo secas emolhadas de encontrar uma relacao com o conteudo de agua de solo. Aevaporacao foi medida usando microlysimeters e o modelo do Evett a evaporacao potencial.
Journal of Photochemistry and Photobiology B-biology | 2001
Carlos L. Ballaré; M. Cecilia Rousseaux; Peter S. Searles; Johann G. Zaller; Carla Valeria Giordano; T. Matthew Robson; Martyn M. Caldwell; Osvaldo E Sala; Ana L. Scopel
Proceedings of the National Academy of Sciences of the United States of America | 1999
M. Cecilia Rousseaux; Carlos L. Ballaré; Carla Valeria Giordano; Ana L. Scopel; Ana M. Zima; Mariela Szwarcberg-Bracchitta; Peter S. Searles; Martyn M. Caldwell; Susana B. Díaz
Global Change Biology | 1999
Peter S. Searles; Stephan D. Flint; Susana B. Díaz; M. Cecilia Rousseaux; Carlos L. Ballaré; Martyn M. Caldwell