Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Chevreton is active.

Publication


Featured researches published by M. Chevreton.


web science | 1991

Asteroseismology of the DOV star PG 1159 - 035 with the Whole Earth Telescope

D. E. Winget; R. E. Nather; J. C. Clemens; J. L. Provencal; S. J. Kleinman; P. A. Bradley; Matt A. Wood; C. F. Claver; Marian Frueh; A. D. Grauer; B. P. Hine; C. J. Hansen; G. Fontaine; N. Achilleos; D. T. Wickramasinghe; T. M. K. Marar; S. Seetha; B. N. Ashoka; D. O'Donoghue; Brian Warner; D. W. Kurtz; David A. H. Buckley; J. Brickhill; G. Vauclair; N. Dolez; M. Chevreton; M. A. Barstow; J.-E. Solheim; A. Kanaan; S. O. Kepler

Results are reported from 264.1 hr of nearly continuous time-series photometry on the pulsating prewhite dwarf star (DPV) PG 1159 - 035. The power spectrum of the data set is completely resolved into 125 individual frequencies; 101 of them are identified with specific quantized pulsation modes, and the rest are completely consistent with such modal assignment. It is argued that the luminosity variations are certainly the result of g-mode pulsations. Although the amplitudes of some of the peaks exhibit significant variations on the time scales of a year or so, the underlying frequency structure of the pulsations is stable over much longer intervals. The existing linear theory is invoked to determine, or strongly constrain, many of the fundamental physical parameters describing this star. Its mass is found to be 0.586 solar mass, is rotation period 1.38 days, its magnetic field less than 6000 G, its pulsation and rotation axes to be aligned, and its outer layers to be compositionally stratified.


The Astrophysical Journal | 1994

Whole earth telescope observations of the DBV white dwarf GD 358

D. E. Winget; R. E. Nather; J. C. Clemens; J. L. Provencal; S. J. Kleinman; P. A. Bradley; C. F. Claver; J. S. Dixson; M. H. Montgomery; C. J. Hansen; B. P. Hine; P. Birch; M. Candy; T. M. K. Marar; S. Seetha; B. N. Ashoka; Elia M. Leibowitz; D. O'Donoghue; Brian Warner; David A. H. Buckley; P. Tripe; G. Vauclair; N. Dolez; M. Chevreton; T. Serre; R. Garrido; S. O. Kepler; A. Kanaan; T. Augusteijn; Matt A. Wood

We report on the analysis of 154 hours of early continuous high-speed photometry on the pulsating DB white dwarf (DBV) GD 358, obtained during the Whole Earth Telescope (WET) run of 1990 May. The power spectrum of the light curve is dominated by power in the range from 1000 to 2400 microHz with more than 180 significant peaks in the total spectrum. We identify all of the triplet frequencies as degree l = 1, and from the details of their spacings we derive the total stellar mass as 0.61 + or - 0.03 solar mass, the mass of the outer helium envelope as 2.0 + or - 1.0 x 10(exp -6) M(sub *), the absolute luminosity as 0.050 + or - 0.012 solar luminosity and the distance as 42 + or - 3 pc. We find strong evidence for differential rotation in the radial direction -- the outer envelope is rotating at least 1.8 times faster than the core -- and we detect the presence of a weak magnetic field with a strength of 1300 + or - 300 G. We also find a significant power at the sums and differences of the dominant frequencies, indicating nonlinear processes are significant, but they have a richness and complexity that rules out resonant mode coupling as a major cause.


The Astrophysical Journal | 1998

Understanding the Cool DA White Dwarf Pulsator, G29-38

S. J. Kleinman; R. E. Nather; D. E. Winget; J. C. Clemens; P. A. Bradley; A. Kanaan; J. L. Provencal; C. F. Claver; T. K. Watson; K. Yanagida; A. Nitta; J. S. Dixson; Matt A. Wood; A. D. Grauer; B. P. Hine; G. Fontaine; James Liebert; D. J. Sullivan; D. T. Wickramasinghe; N. Achilleos; T. M. K. Marar; S. Seetha; B. N. Ashoka; E. G. Meištas; Elia M. Leibowitz; P. Moskalik; Jurek Krzesinski; J.-E. Solheim; A. Bruvold; D. O'Donoghue

The white dwarfs are promising laboratories for the study of cosmochronology and stellar evolution. Through observations of the pulsating white dwarfs, we can measure their internal structures and compositions, critical to understanding post main sequence evolution, along with their cooling rates, allowing us to calibrate their ages directly. The most important set of white dwarf variables to measure are the oldest of the pulsators, the cool DAVs, which have not previously been explored through asteroseismology due to their complexity and instability. Through a time-series photometry data set spanning ten years, we explore the pulsation spectrum of the cool DAV, G29-38 and find an underlying structure of 19 (not including multiplet components) normal-mode, probably l=1 pulsations amidst an abundance of time variability and linear combination modes. Modelling results are incomplete, but we suggest possible starting directions and discuss probable values for the stellar mass and hydrogen layer size. For the first time, we have made sense out of the complicated power spectra of a large-amplitude DA pulsator. We have shown its seemingly erratic set of observed frequencies can be understood in terms of a recurring set of normal-mode pulsations and their linear combinations. With this result, we have opened the interior secrets of the DAVs to future asteroseismological modelling, thereby joining the rest of the known white dwarf pulsators.


Astronomy and Astrophysics | 2003

The everchanging pulsating white dwarf GD358

S. O. Kepler; J.-E. Solheim; R. Edward Nather; José Miguel González Pérez; Frank Johannessen; D. E. Winget; Atsuko Nitta; S. J. Kleinman; T. S. Metcalfe; Kazuhiro Sekiguchi; Jiang Xiaojun; D. J. Sullivan; T. Sullivan; R. Janulis; Edmund Meistas; R. Kalytis; Jurek Krzesinski; W. Ogloza; D. O’Donoghue; Encarni Romero-Colmenero; Peter Martinez; S. Dreizler; Jochen L. Deetjen; T. Nagel; S. Schuh; G. Vauclair; Fu Jian Ning; M. Chevreton; A. Kanaan; Jos´e Eduardo Costa

We report 323 hours of nearly uninterrupted time series photometric observations of the DBV star GD 358 acquired with the Whole Earth Telescope (WET) during May 23rd to June 8th, 2000. We acquired more than 232000 independent measurements. We also report on 48 hours of time-series photometric observations in Aug 1996. We detected the non-radial g-modes consistent with degree l = 1 and radial order 8 to 20 and their linear combinations up to 6th order. We also detect, for the first time, a high amplitude l = 2 mode, with a period of 796 s. In the 2000 WET data, the largest amplitude modes are similar to those detected with the WET observations of 1990 and 1994, but the highest combination order previously detected was 4th order. At one point


web science | 1991

A detection of the evolutionary time scale of the DA white dwarf G117- B15A with the whole earth telescope

S. O. Kepler; D. E. Winget; R. E. Nather; P. A. Bradley; A. D. Grauer; G. Fontaine; Pierre Bergeron; G. Vauclair; C. F. Claver; T. M. K. Marar; S. Seetha; B. N. Ashoka; Tsevi Mazeh; Elia M. Leibowitz; N. Dolez; M. Chevreton; M. A. Barstow; J. C. Clemens; S. J. Kleinman; A. E. Sansom; R. W. Tweedy; A. Kanaan; B. P. Hine; J. L. Provencal; F. Wesemael; M. A. Wood; P. Brassard; J.-E. Solheim; P.-I. Emanuelsen

The time rate of change for the main pulsation period of the 13,000 K DA white dwarf G117 - B15A has been detected using the Whole Earth Telescope (WET). The observed rate of period change, P(dot) = (12.0 + or - 3.5) x 10 to the -15th s/s, is somewhat larger than the published theoretical calculations of the rate of period change due to cooling, based on carbon core white dwarf models. Other effects that could contribute to the observed rate of period change are discussed.


web science | 2004

Observations of the pulsating subdwarf B star Feige 48: Constraints on evolution and companions

M. D. Reed; S. D. Kawaler; S. Zola; X. J. Jiang; S. Dreizler; S. Schuh; Jochen L. Deetjen; R. Kalytis; E. G. Meištas; R. Janulis; D. Ališauskas; Jurek Krzesinski; M. Vučković; P. Moskalik; W. Ogloza; A. Baran; G. Stachowski; D. W. Kurtz; J. M. Gonzalez Perez; Anjum S. Mukadam; T. K. Watson; C. Koen; P. A. Bradley; M. S. Cunha; Mukremin Kilic; E. W. Klumpe; R. F. Carlton; G. Handler; D. Kilkenny; R. L. Riddle

Since pulsating subdwarf B (sdBV or EC14026) stars were first discovered, observational efforts have tried to realize their potential for constraining the interior physics of extreme horizontal branch stars. Difficulties encountered along the way include uncertain mode identifications and a lack of stable pulsation mode properties. Here we report on Feige 48, an sdBV star for which follow-up observations have been obtained spanning more than four years. These observations show some stable pulsation modes. We resolve the temporal spectrum into five stable pulsation periods in the range 340–380 s with amplitudes less than 1 per cent, and two additional periods that appear in one data set each. The three largest amplitude periodicities are nearly equally spaced, and we explore the consequences of identifying them as a rotationally split l= 1 triplet by consulting a representative stellar model. The general stability of the pulsation amplitudes and phases allows us to use the pulsation phases to constrain the time-scale of evolution for this sdBV star. Additionally, we are able to place interesting limits on any stellar or planetary companion to Feige 48.


The Astrophysical Journal | 2003

CONSTRAINING THE EVOLUTION OF ZZ CETI

Anjum S. Mukadam; S. O. Kepler; D. E. Winget; R. E. Nather; Mukremin Kilic; Fergal Mullally; T. von Hippel; S. J. Kleinman; Atsuko Nitta; Joyce Ann Guzik; P. A. Bradley; Jaymie M. Matthews; K. Sekiguchi; D. J. Sullivan; T. Sullivan; R. R. Shobbrook; Peter V. Birch; X. J. Jiang; Dong-Ling Xu; S. Joshi; B. N. Ashoka; P. Ibbetson; E. M. Leibowitz; Eran O. Ofek; E. G. Meištas; R. Janulis; D. Ališauskas; R. Kalytis; G. Handler; D. Kilkenny

We report our analysis of the stability of pulsation periods in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti, also called R548. On the basis of observations that span 31 years, we conclude that the period 213.13 s observed in ZZ Ceti drifts at a rate dP/dt ≤ (5.5 ± 1.9) × 10-15 s s-1, after correcting for proper motion. Our results are consistent with previous values for this mode and an improvement over them because of the larger time base. The characteristic stability timescale implied for the pulsation period is P/ ≥ 1.2 Gyr, comparable to the theoretical cooling timescale for the star. Our current stability limit for the period 213.13 s is only slightly less than the present measurement for another DAV, G117-B15A, for the period 215.2 s, establishing this mode in ZZ Ceti as the second most stable optical clock known, comparable to atomic clocks and more stable than most pulsars. Constraining the cooling rate of ZZ Ceti aids theoretical evolutionary models and white dwarf cosmochronology. The drift rate of this clock is small enough that we can set interesting limits on reflex motion due to planetary companions.


Astronomy and Astrophysics | 2008

The pulsation modes of the pre-white dwarf PG 1159-035

J. E. S. Costa; J.-E. Solheim; S. O. Kepler; D. E. Winget; M. S. O’Brien; Steven D. Kawaler; A. F. M. Costa; O. Giovannini; A. Kanaan; Anjum S. Mukadam; Fergal Mullally; Atsuko Nitta; J. L. Provenc; Harry S. Shipman; Matt A. Wood; T. J. Ahrens; A. D. Grauer; Mukremin Kilic; P. A. Bradley; K. Sekiguchi; R. Crowe; X. J. Jiang; D. J. Sullivan; T. Sullivan; R. Rosen; J. C. Clemens; R. Janulis; D. O’Donoghue; W. Ogloza; A. Baran

Context. PG 1159-035, a pre-white dwarf with Teff � 140 000 K, is the prototype of both two classes: the PG 1159 spectroscopic class and the DOV pulsating class. Previous studies of PG 1159-035 photometric data obtained with the Whole Earth Telescope (WET) showed a rich frequency spectrum allowing the identification of 122 pulsation modes. Analyzing the periods of pulsation, it is possible to measure the stellar mass, the rotational period and the inclination of the rotation axis, to estimate an upper limit for the magnetic field, and even to obtain information about the inner stratification of the star. Aims. We have three principal aims: to increase the number of detected and identified pulsation modes in PG 1159-035, study trapping of the star’s pulsation modes, and to improve or constrain the determination of stellar parameters. Methods. We used all available WET photometric data from 1983, 1985, 1989, 1993 and 2002 to identify the pulsation periods. Results. We identified 76 additional pulsation modes, increasing to 198 the number of known pulsation modes in PG 1159-035, the largest number of modes detected in any star besides the Sun. From the period spacing we estimated a mass M/M� = 0.59 ± 0.02 for PG 1159-035, with the uncertainty dominated by the models, not the observation. Deviations in the regular period spacing suggest that some of the pulsation modes are trapped, even though the star is a pre-white dwarf and the gravitational settling is ongoing. The position of the transition zone that causes the mode trapping was calculated at rc/R� = 0.83 ± 0.05. From the multiplet splitting, we calculated the rotational period Prot = 1.3920 ± 0.0008 days and an upper limit for the magnetic field, B < 2000 G. The total power of the pulsation modes at the stellar surface changed less than 30% for � = 1 modes and less than 50% for � = 2 modes. We find no evidence of linear combinations between the 198 pulsation mode frequencies. PG 1159-035 models have not significative convection zones, supporting the hypothesis that nonlinearity arises in the convection zones in cooler pulsating white dwarf stars.


web science | 2002

Asteroseismology of RXJ 2117+3412, the hottest pulsating PG 1159 star

G. Vauclair; P. Moskalik; B. Pfeiffer; M. Chevreton; N. Dolez; B. Serre; S. J. Kleinman; M. A. Barstow; A. E. Sansom; J.-E. Solheim; Juan Antonio Belmonte; Steven D. Kawaler; S. O. Kepler; A. Kanaan; O. Giovannini; D. E. Winget; T. K. Watson; R. E. Nather; J. C. Clemens; J. L. Provencal; J. S. Dixson; K. Yanagida; A. Nitta Kleinman; M. H. Montgomery; E. W. Klumpe; A. Bruvold; M. S. O'Brien; C. J. Hansen; A. D. Grauer; P. A. Bradley

The pulsating PG 1159 planetary nebula central star RXJ 2117+3412 has been observed over three successive seasons of a multisite photometric campaign. The asteroseismological analysis of the data, based on the 37 identified ` = 1 modes among the 48 independent pulsation frequencies detected in the power spectrum, leads to the derivation of the rotational splitting, the period spacing and the mode trapping cycle and amplitude, from which a number of fundamental parameters can be deduced. The average rotation period is 1.16 ± 0.05 days. The trend for the rotational splitting to decrease with increasing periods is incompatible with a solid body rotation. The total mass is 0.56 −0.04 M and the He-rich envelope mass fraction is in the range 0.013–0.078 M∗. The luminosity derived from asteroseismology is log(L/L ) = 4.05 +0.23 −0.32 and the distance 760 +230 −235 pc. At such a distance, the linear size of the planetary nebulae is 2.9 ± 0.9 pc. The role of mass loss on the excitation mechanism and its consequence on the amplitude variations is discussed.


The Astrophysical Journal | 1997

Whole earth telescope observations of the helium interacting binary PG 1346+082 (CR Bootis)

J. L. Provencal; D. E. Winget; R. E. Nather; Edward L. Robinson; J. C. Clemens; P. A. Bradley; C. F. Claver; S. J. Kleinman; Albert D. Grauer; B. P. Hine; Lilia Ferrario; D. O'Donoghue; Brian Warner; G. Vauclair; M. Chevreton; S. O. Kepler; Matt A. Wood; Gregory W. Henry

We present our analysis of 240 hr of white-light, high-speed photometry of the dwarf nova-like helium variable PG 1346+082 (CR Boo). We identify two frequencies in the low-state power spectrum, at 679.670 ± 0.004 μHz and 669.887 ± 0.008 μHz. The 679.670 μHz variation is coherent over at least a 2 week time span, the first demonstration of a phase-coherent photometric variation in any dwarf nova-like interacting binary white dwarf system. The high-state power spectrum contains a complex fundamental with a frequency similar, but not identical, to the low-state spectrum, and a series of harmonics not detected in low state. We also uncover an unexpected dependence of the high-frequency powers amplitude and frequency structure on overall system magnitude. We discuss these findings in light of the general AM CVn system model, particularly the implications of the high-order harmonics on future studies of disk structure, mass transfer, and disk viscosity.

Collaboration


Dive into the M. Chevreton's collaboration.

Top Co-Authors

Avatar

G. Vauclair

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

D. E. Winget

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

S. O. Kepler

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

R. E. Nather

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. L. Provencal

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

P. A. Bradley

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matt A. Wood

Florida Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. C. Clemens

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

B. N. Ashoka

Indian Space Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge