Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Chris Barnhart is active.

Publication


Featured researches published by M. Chris Barnhart.


Environmental Toxicology and Chemistry | 2007

Chronic toxicity of copper and ammonia to juvenile freshwater mussels (unionidae)

Ning Wang; Christopher G. Ingersoll; I. Eugene Greer; Douglas K. Hardesty; Christopher D. Ivey; James L. Kunz; William G. Brumbaugh; F. James Dwyer; Andy D. Roberts; Tom Augspurger; Cynthia M. Kane; Richard J. Neves; M. Chris Barnhart

The objectives of the present study were to develop methods for conducting chronic toxicity tests with juvenile mussels under flow-through conditions and to determine the chronic toxicity of copper and ammonia to juvenile mussels using these methods. In two feeding tests, two-month-old fatmucket (Lampsilis siliquoidea) and rainbow mussel (Villosa iris) were fed various live algae or nonviable algal mixture for 28 d. The algal mixture was the best food resulting in high survival (>or=90%) and growth. Multiple copper and ammonia toxicity tests were conducted for 28 d starting with two-month-old mussels. Six toxicity tests using the algal mixture were successfully completed with a control survival of 88 to 100%. Among copper tests with rainbow mussel, fatmucket, and oyster mussel (Epioblasma capsaeformis), chronic value ([ChV], geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) ranged from 8.5 to 9.8 microg Cu/L for survival and from 4.6 to 8.5 microg Cu/L for growth. Among ammonia tests with rainbow mussel, fatmucket, and wavy-rayed lampmussel (L. fasciola), the ChV ranged from 0.37 to 1.2 mg total ammonia N/L for survival and from 0.37 to 0.67 mg N/L for growth. These ChVs were below the U.S. Environmental Protection Agency 1996 chronic water quality criterion (WQC) for copper (15 microg/L; hardness 170 mg/L) and 1999 WQC for total ammonia (1.26 mg N/L; pH 8.2 and 20 degrees C). Results indicate that toxicity tests with two-month-old mussels can be conducted for 28 d with >80% control survival; growth was frequently a more sensitive endpoint compared to survival; and the 1996 chronic WQC for copper and the 1999 chronic WQC for total ammonia might not be adequately protective of the mussel species tested. However, a recently revised 2007 chronic WQC for copper based on the biotic ligand model may be more protective in the water tested.


Environmental Toxicology and Chemistry | 2007

Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (unionidae)

Ning Wang; Christopher G. Ingersoll; Douglas K. Hardesty; Christopher D. Ivey; James L. Kunz; Thomas W. May; F. James Dwyer; Andy D. Roberts; Tom Augspurger; Cynthia M. Kane; Richard J. Neves; M. Chris Barnhart

The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 microg Cu/L (except 15 microg Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were <45 microg Cu/L or <12 mg N/L and were often at or below the final acute values (FAVs) used to derive the U.S. Environmental Protection Agency 1996 acute water quality criterion (WQC) for copper and 1999 acute WQC for ammonia. However, the chlorine EC50s for mussels generally were >40 microg/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC.


Environmental Toxicology and Chemistry | 2007

Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (unionidae)

Robert B. Bringolf; W. Gregory Cope; Shad Mosher; M. Chris Barnhart; Damian Shea

Native freshwater mussels (family Unionidae) are among the most imperiled faunal groups in the world. Factors contributing to the decline of mussel populations likely include pesticides and other aquatic contaminants; however, there is a paucity of data regarding the toxicity of even the most globally distributed pesticides, including glyphosate, to mussels. Therefore, the toxicity of several forms of glyphosate, its formulations, and a surfactant (MON 0818) used in several glyphosate formulations was determined for early life stages of Lampsilis siliquoidea, a native freshwater mussel. Acute and chronic toxicity tests were performed with a newly established American Society of Testing and Materials (ASTM) standard guide for conducting toxicity tests with freshwater mussels. Roundup, its active ingredient, the technical-grade isopropylamine (IPA) salt of glyphosate, IPA alone, and MON 0818 (the surfactant in Roundup formulations) were each acutely toxic to L. siliquoidea glochidia. MON 0818 was most toxic of the compounds tested and the 48-h median effective concentration (0.5 mg/L) for L. siliquoidea glochidia is the lowest reported for any aquatic organism tested to date. Juvenile L. siliquoidea were also acutely sensitive to MON 0818, Roundup, glyphosate IPA salt, and IPA alone. Technical-grade glyphosate and Aqua Star were not acutely toxic to glochidia or juveniles. Ranking of relative chronic toxicity of the glyphosate-related compounds to juvenile mussels was similar to the ranking of relative acute toxicity to juveniles. Growth data from chronic tests was largely inconclusive. In summary, these results indicate that L. siliquoidea, a representative of the nearly 300 freshwater mussel taxa in North America, is among the most sensitive aquatic organisms tested to date with glyphosate-based chemicals and the surfactant MON 0818.


Environmental Toxicology and Chemistry | 2007

Acute and chronic toxicity of pesticide formulations (atrazine, chlorpyrifos, and permethrin) to glochidia and juveniles of Lampsilis siliquoidea

Robert B. Bringolf; W. Gregory Cope; M. Chris Barnhart; Shad Mosher; Peter R. Lazaro; Damian Shea

Freshwater mussels are among the most imperiled faunal groups in North America; approximately 67% of the nearly 300 native freshwater mussel species (family Unionidae) are listed as endangered, threatened, or of special concern. Despite evidence that glochidia and juvenile life stages are highly sensitive to some chemical contaminants, the effects of pesticides on early life stages of unionid mussels are largely unknown. In the United States, pesticide registration is based on toxicity data of the active ingredient, not formulations as they are sold and applied. Some pesticide formulations, however, are more toxic than their active ingredient (technical-grade pesticide) alone because of the presence of surfactants, adjuvants, or other ingredients in the formulation. The objective of the present study was to compare the toxicity of active ingredients of several current-use pesticides (atrazine, chlorpyrifos, and permethrin) to the toxicity of pesticide formulations to glochidia and juvenile life stages of a freshwater mussel (Lampsilis siliquoidea). The atrazine formulation (Aatrex) was more toxic than technical-grade atrazine in chronic tests with juvenile L. siliquoidea. For other pesticides, acute and chronic toxicity of technical-grade pesticides were similar to the toxicity of pesticide formulations. Median effective concentrations for chlorpyrifos were 0.43 mg/L for glochidia at 48 h, 0.25 mg/L for juveniles at 96 h, and 0.06 mg/L for juveniles at 21 d. Atrazine and permethrin as well as their formulations did not cause significant acute toxicity in glochidia or juveniles at exposure concentrations approaching water-solubility limits. Additional research is needed on other pesticides with different modes of action, on the role of different routes of exposure, and with other species of unionid mussels to evaluate similarities of toxic response.


Environmental Toxicology and Chemistry | 2010

Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadmium, and zinc in water.

Ning Wang; Christopher G. Ingersoll; Christopher D. Ivey; Douglas K. Hardesty; Thomas W. May; Tom Augspurger; Andy D. Roberts; Eric Van Genderen; M. Chris Barnhart

Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species.


Environmental Toxicology and Chemistry | 2007

Intra‐ and interlaboratory variability in acute toxicity tests with glochidia and juveniles of freshwater mussels (unionidae)

Ning Wang; Tom Augspurger; M. Chris Barnhart; Joseph R. Bidwell; W. Gregory Cope; F. James Dwyer; Steve Geis; I. Eugene Greer; Chris G. Ingersoll; Cynthia M. Kane; Thomas W. May; Richard J. Neves; Teresa J. Newton; Andy D. Roberts; David W. Whites

The present study evaluated the performance and variability in acute toxicity tests with glochidia and newly transformed juvenile mussels using the standard methods outlined in American Society for Testing and Materials (ASTM). Multiple 48-h toxicity tests with glochidia and 96-h tests with juvenile mussels were conducted within a single laboratory and among five laboratories. All tests met the test acceptability requirements (e.g., >or=90% control survival). Intralaboratory tests were conducted over two consecutive mussel-spawning seasons with mucket (Actinonaias ligamentina) or fatmucket (Lampsilis siliquoidea) using copper, ammonia, or chlorine as a toxicant. For the glochidia of both species, the variability of intralaboratory median effective concentrations (EC50s) for the three toxicants, expressed as the coefficient of variation (CV), ranged from 14 to 27% in 24-h exposures and from 13 to 36% in 48-h exposures. The intralaboratory CV of copper EC50s for juvenile fatmucket was 24% in 48-h exposures and 13% in 96-h exposures. Interlaboratory tests were conducted with fatmucket glochidia and juveniles by five laboratories using copper as a toxicant. The interlaboratory CV of copper EC50s for glochidia was 13% in 24-h exposures and 24% in 48-h exposures, and the interlaboratory CV for juveniles was 22% in 48-h exposures and 42% in 96-h exposures. The high completion success and the overall low variability in test results indicate that the test methods have acceptable precision and can be performed routinely.


Animal Behaviour | 2011

Do gill parasites influence the foraging and antipredator behaviour of rainbow darters, Etheostoma caeruleum?

Adam L. Crane; Andrea K. Fritts; Alicia Mathis; John C. Lisek; M. Chris Barnhart

Parasites are known to affect an array of characteristics of their hosts, including morphology, physiology and behaviour. We examined the foraging and antipredator behaviour of rainbow darters, Etheostoma caeruleum, that were parasitized by glochidia larvae of freshwater mussels (Ptychobranchus occidentalis and Venustaconcha pleasii: Unionidae). Glochidia attach to the gills of the host and become encapsulated in host tissue. Over a period of days or weeks the larvae develop into free-living juveniles, which then leave the host. Parasitized darters increased ventilation rates (either early in the infestation or at the height of the infestation), were less active during foraging trials, lost more body size than nonparasitized darters and showed significantly weaker responses to predation risk (signalled by the presence of a chemical alarm cue). Therefore, even for a relatively short-term infection, parasitized darters may pay a cost in terms of decreased growth and decreased probability of survival.


Environmental Toxicology and Chemistry | 2009

Evaluation of acute copper toxicity to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) in natural and reconstituted waters

Ning Wang; Christopher A. Mebane; James L. Kunz; Christopher G. Ingersoll; Thomas W. May; W. Ray Arnold; Robert C. Santore; I Tom Augspurger; F. James Dwyer; M. Chris Barnhart

The influence of dissolved organic carbon (DOC) and water composition on the toxicity of copper to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) were evaluated in natural and reconstituted waters. Acute 96-h copper toxicity tests werec onducted at four nominal DOC concentrations (0, 2.5, 5, and 10 mg/L as carbon [C]) in dilutions of natural waters and in American Society for Testing and Materials (ASTM) reconstituted hard water. Toxicity tests also were conducted in ASTM soft, moderately hard, hard, and very hard reconstituted waters (nominal hardness 45-300 mg/L as CaCO₃). Three natural surface waters (9.5-11 mg/L DOC) were diluted to obtain a series of DOC concentrations with diluted well water, and an extract of natural organic matter and commercial humic acid was mixed with ASTM hard water to prepare a series of DOC concentrations for toxicity testing. Median effective concentrations (EC50s) for dissolved copper varied >40-fold (9.9 to >396 gg Cu/L) over all 21 treatments in various DOC waters. Within a particular type of DOC water, EC50s increased 5- to 12-fold across DOC concentrations of 0.3 to up to 11 mg C/L. However, EC50s increased by only a factor of 1.4 (21-30 gg Cu/L) in the four ASTM waters with wide range of water hardness (52-300 mg CaCO₃/L). Predictions from the biotic ligand model (BLM) for copper explained nearly 90% of the variability in EC50s. Nearly 70% of BLM-normalized EC50s for fatmucket tested in natural waters were below the final acute value used to derive the U.S. Environmental Protection Agency acute water quality criterion for copper, indicating that the criterion might not be protective of fatmucket and perhaps other mussel species.


Archive | 2007

Contaminant Sensitivity of Freshwater Mussels CHRONIC TOXICITY OF COPPER AND AMMONIA TO JUVENILE FRESHWATER MUSSELS (UNIONIDAE)

Ning Wang; Christopher G. Ingersoll; I. Eugene Greer; Douglas K. Hardesty; Christopher D. Ivey; James L. Kunz; William G. Brumbaugh; F. James Dwyer; Andy D. Roberts; Tom Augspurger; Cynthia M. Kane; Richard J. Neves; M. Chris Barnhart


Archive | 2007

Contaminant Sensitivity of Freshwater Mussels ACUTE TOXICITY OF COPPER, AMMONIA, AND CHLORINE TO GLOCHIDIA AND JUVENILES OF FRESHWATER MUSSELS (UNIONIDAE)

Ning Wang; Christopher G. Ingersoll; Douglas K. Hardesty; Christopher D. Ivey; James L. Kunz; Thomas W. M Ay; F. James Dwyer; Andy D. Roberts; Tom Augspurger; Cynthia M. Kane; Richard J. Neves; M. Chris Barnhart

Collaboration


Dive into the M. Chris Barnhart's collaboration.

Top Co-Authors

Avatar

Ning Wang

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Andy D. Roberts

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Tom Augspurger

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Christopher G. Ingersoll

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Cynthia M. Kane

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

F. James Dwyer

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Ivey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Douglas K. Hardesty

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James L. Kunz

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge