Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Claeys is active.

Publication


Featured researches published by M. Claeys.


Journal of Physical Chemistry A | 2008

Organosulfate Formation in Biogenic Secondary Organic Aerosol

Jason D. Surratt; Yadian Gómez-González; Arthur W. H. Chan; Reinhilde Vermeylen; Mona Shahgholi; Tadeusz E. Kleindienst; Edward O. Edney; John H. Offenberg; Michael Lewandowski; Mohammed Jaoui; Willy Maenhaut; M. Claeys; John H. Seinfeld

Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate that the organosulfate contribution to the total organic mass fraction of ambient aerosol collected from K-puszta, Hungary, a field site with a similar organosulfate composition as that found in the present study for the southeastern U.S., can be as high as 30%.


Journal of Geophysical Research | 2007

Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background

Hans Puxbaum; Alexandre Caseiro; Asunción Sánchez-Ochoa; Anne Kasper-Giebl; M. Claeys; András Gelencsér; Michel Legrand; Susanne Preunkert; Casimiro Pio

Atmospheric levoglucosan has been determined as a proxy for “biomass smoke” in samples from six background stations on a west–east transect extending from the Atlantic (Azores) to the mid-European background site KPZ (K-Puszta, Hungary). Concentration levels of levoglucosan (biannual averages) in the west–east transect range from 0.005 μg/m3 at the oceanic background site AZO (Azores) to 0.52 μg/m3 at AVE (Aveiro, Portugal). The atmospheric concentration of “biomass smoke” (biannual averages) was derived from the levoglucosan data with wood-type-specific conversion factors. Annual averages of wood smoke levels ranged from 0.05 μg/m3 at AZO to 4.3 μg/m3 at AVE. Winter (DJF) averages at the low-level sites AVE and KPZ were 10.8 and 6.7 μg/m3, respectively. Relative contributions of biomass smoke to organic matter (OM) range from around 9–11% at the elevated sites SIL, PDD and SBO, as well as for AZO, to 36% at the low-level site AVE and 28% at KPZ. Surprisingly high relative concentrations of biomass smoke in OM (68 and 47%) were observed for wintry conditions at the continental low-level CARBOSOL sites AVE and KPZ. Thus biomass smoke is a very important constituent of the organic material in the mid and west European background with summer contributions to organic matter of around 1–6% and winter levels of around 20% at the elevated mountain sites and 47–68% at rural flat terrain sites, not including secondary organic aerosol from biomass combustion sources.


Rapid Communications in Mass Spectrometry | 1997

Characterization of flavone and flavonol aglycones by collision‐induced dissociation tandem mass spectrometry

Yuliang Ma; Q. M. Li; H. van den Heuvel; M. Claeys

A mass spectrometric method based on the combined use of fast atom bombardment collisionally-induced dissociation (CID) and tandem mass spectrometry has been used for the structural characterization of free and conjugated flavone and flavonol aglycones. Low-energy CID spectra of the [M + H]+ (or Y+0) ions show simple fragmentation patterns, which allow characterization of the substituents in the A and B rings and, in particular, differentiation between flavones and flavonols. A systematic nomenclature for product ions produced from protonated molecules under CID conditions is proposed.


Tetrahedron Letters | 1995

New alkaloids from Cryptolepis sanguinolenta

K. Cimanga; T. De Bruyne; Luc Pieters; M. Claeys; A.J. Vlietinck

Neocryptolepine and biscryptolepine, two new alkaloids, were isolated from the root bark extract of the African medicinal plant, Cryptolepis sanguinolenta (Lindl.) Schlechter (Periplocaceae), and their structures elucidated on the basis of spectral evidence. The 1H and 13C NMR assignments of cryptoquindoline, a known artefact, were revised.


Chemical Reviews | 2015

The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

Barbara Nozière; Markus Kaberer; M. Claeys; J. D. Allan; Barbara D'Anna; Stefano Decesari; E. Finessi; Marianne Glasius; Irena Grgić; Jacqueline F. Hamilton; Thorsten Hoffmann; Yoshiteru Iinuma; Mohammed Jaoui; Ariane Kahno; Christopher J. Kampf; Ivan Kourtchev; Willy Maenhaut; Nicholas Marsden; Sanna Saarikoski; Jürgen Schnelle-Kreis; Jason D. Surratt; Sönke Szidat; Rafal Szmigielski; Armin Wisthaler

Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway


Journal of Geophysical Research | 2007

Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season

S. Fuzzi; Stefano Decesari; M. C. Facchini; F. Cavalli; L. Emblico; M. Mircea; Meinrat O. Andreae; Ivonne Trebs; A. Hoffer; Pascal Guyon; Paulo Artaxo; Luciana V. Rizzo; Luciene L. Lara; Theotonio Pauliquevis; Willy Maenhaut; Nico Raes; Xuguang Chi; Olga L. Mayol-Bracero; L. L. Soto-Garcia; M. Claeys; Ivan Kourtchev; Jenny Rissler; Erik Swietlicki; Emilio Tagliavini; Gal Schkolnik; Alla H. Falkovich; Yinon Rudich; Gilberto Fisch; Luciana V. Gatti

The aerosol characterization experiment performed within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) field experiment carried out in Rondonia, Brazil, in the period from September to November 2002 provides a unique data set of size-resolved chemical composition of boundary layer aerosol over the Amazon Basin from the intense biomass-burning period to the onset of the wet season. Three main periods were clearly distinguished on the basis of the PM10 concentration trend during the experiment: (1) dry period, with average PM10 well above 50 mu g m(-3); (2) transition period, during which the 24-hour-averaged PM10 never exceeded 40 mu g m(-3) and never dropped below 10 mg m(-3); (3) and wet period, characterized by 48-hour-averaged concentrations of PM10 below 12 mu g m(-3) and sometimes as low as 2 mu g m(-3). The trend of PM10 reflects that of CO concentration and can be directly linked to the decreasing intensity of the biomass- burning activities from September through November, because of the progressive onset of the wet season. Two prominent aerosol modes, in the submicron and supermicron size ranges, were detected throughout the experiment. Dry period size distributions are dominated by the fine mode, while the fine and coarse modes show almost the same concentrations during the wet period. The supermicron fraction of the aerosol is composed mainly of primary particles of crustal or biological origin, whereas submicron particles are produced in high concentrations only during the biomass-burning periods and are mainly composed of organic material, mostly water-soluble, and similar to 10% of soluble inorganic salts, with sulphate as the major anion. Size-resolved average aerosol chemical compositions are reported for the dry, transition, and wet periods. However, significant variations in the aerosol composition and concentrations were observed within each period, which can be classified into two categories: (1) diurnal oscillations, caused by the diurnal cycle of the boundary layer and the different combustion phase active during day (flaming) or night (smouldering); and (2) day-to-day variations, due to alternating phases of relatively wet and dry conditions. In a second part of the study, three subperiods representative of the conditions occurring in the dry, transition, and wet periods were isolated to follow the evolution of the aerosol chemical composition as a function of changes in rainfall rate and in the strength of the sources of particulate matter. The chemical data set provided by the SMOCC field experiment will be useful to characterize the aerosol hygroscopic properties and the ability of the particles to act as cloud condensation nuclei.


Journal of the American Society for Mass Spectrometry | 2000

Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation

Yuliang Ma; Irina Vedernikova; Hilde Van den Heuvel; M. Claeys

The low-energy collision-induced dissociation of protonated flavonoid O-diglycosides, i.e., flavonoid O-rutinosides and O-neohesperidosides, containing different aglycone types has been studied. The results indicate that the unusual [M + H − 162]+ ion formed by internal glucose residue loss, which in a previous study was shown to be a rearrangement ion, is strongly dependent upon the aglycone type. For 7-O-diglycosides, the internal glucose loss is very pronounced for aglycones of the flavanone type, but is completely absent for aglycones of the flavone and flavonol types. Internal glucose residue loss was found to correspond to a minor fragmentation pathway for flavonol 3-O-diglycosides. A plausible mechanism is proposed based on proton mobilization from the aglycone to the disaccharidic part of the flavonoid O-diglycosides which is supported by theoretical calculations and model building.


Environmental Science & Technology | 2010

Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States

Man Nin Chan; Jason D. Surratt; M. Claeys; Eric S. Edgerton; Roger L. Tanner; Stephanie L. Shaw; Mei Zheng; Eladio M. Knipping; Nathan C. Eddingsaas; Paul O. Wennberg; John H. Seinfeld

Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C(5)-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from approximately 1 to 24 ng m(-3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO(x) conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region.


Prostaglandins | 1979

Biosynthesis of prostacyclin (PGI2) and 12L-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) by pericardium, pleura, peritoneum and aorta of the rabbit

Arnold G. Herman; M. Claeys; Moncada S; J.R. Vane

Prostacyclin generation by pericardium, pleura, peritoneum, aorta and dura mater of the rabbit was assessed as platelet aggregation inhibitory activity in platelet rich plasma. All tissues except the dura mater, were also incubated with labelled (1-14C) arachidonic acid and (1-14C) prostaglandin endoperoxide H2 and the various metabolites formed were identified radiochromatographically. Pericardium, pleura and peritoneum form substantially high amounts of prostacyclin and HETE indicating that these tissues contain both cyclo-oxygenase and prostacyclin-synthetase. They also show considerable lipoxygenase activity.


Chemosphere | 2008

Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany

Ivan Kourtchev; Jörg Warnke; Willy Maenhaut; Thorsten Hoffmann; M. Claeys

The molecular composition of PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) aerosol samples collected during a very warm and dry 2003 summer period at a mixed forest site in Jülich, Germany, was determined by gas chromatography/mass spectrometry in an effort to evaluate photooxidation products of biogenic volatile organic compounds (BVOCs) and other markers for aerosol source characterization. Six major classes of compounds represented by twenty-four individual organic species were identified and measured, comprising tracers for biomass combustion, short-chain acids, fatty acids, sugars/sugar alcohols, and tracers for the photooxidation of isoprene and alpha-/beta-pinene. The tracers for the photooxidation of alpha-/beta-pinene include two compounds, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid, which have only recently been elucidated. The characteristic molecular distribution of the fatty acids with a strong even/odd number carbon preference indicates a biological origin, while the presence of isoprene and terpene secondary organic aerosol products suggests that the photooxidation of BVOCs contributes to aerosol formation at this site. The sum of the median concentrations of the isoprene oxidation products was 21.2 ng m(-3), while that of the terpene oxidation products was 19.8 ng m(-3). On the other hand, the high median concentration of malic acid (37 ng m(-3)) implies that photooxidation of unsaturated fatty acids should also be considered as an important aerosol source process. In addition, the occurrence of levoglucosan and pyrogallol indicates that the site is affected by biomass combustion. Their median concentrations were 30 and 8.9 ng m(-3), respectively.

Collaboration


Dive into the M. Claeys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Dillen

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge