Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Cramer is active.

Publication


Featured researches published by M. Cramer.


Physical Review Letters | 2008

Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems

M. Cramer; C. M. Dawson; Jens Eisert; Tobias J. Osborne

A reasonable physical intuition in the study of interacting quantum systems says that, independent of the initial state, the system will tend to equilibrate. In this work we introduce an experimentally accessible setting where relaxation to a steady state is exact, namely, for the Bose-Hubbard model quenched from a Mott quantum phase to the free strong superfluid regime. We rigorously prove that the evolving state locally relaxes to a steady state with maximum entropy constrained by second moments--thus maximizing the entanglement. Remarkably, for this to be true, no time average is necessary. Our argument includes a central limit theorem and exploits the finite speed of information transfer. We also show that for all periodic initial configurations (charge density waves) the system relaxes locally, and identify experimentally accessible signatures in optical lattices as well as implications for the foundations of statistical mechanics.


Physical Review Letters | 2005

Entropy, Entanglement, and Area: Analytical Results for Harmonic Lattice Systems

Martin B. Plenio; Jens Eisert; J. Dreissig; M. Cramer

We revisit the question of the relation between entanglement, entropy, and area for harmonic lattice Hamiltonians corresponding to discrete versions of real free Klein-Gordon fields. For the ground state of the d-dimensional cubic harmonic lattice we establish a strict relationship between the surface area of a distinguished hypercube and the degree of entanglement between the hypercube and the rest of the lattice analytically, without resorting to numerical means. We outline extensions of these results to longer ranged interactions, finite temperatures, and for classical correlations in classical harmonic lattice systems. These findings further suggest that the tools of quantum information science may help in establishing results in quantum field theory that were previously less accessible.


New Journal of Physics | 2010

A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states

M. Cramer; Jens Eisert

We prove that quantum many-body systems on a one-dimensional lattice locally relax to Gaussian states under non-equilibrium dynamics generated by a bosonic quadratic Hamiltonian. This is true for a large class of initial states—pure or mixed—which have to satisfy merely weak conditions concerning the decay of correlations. The considered setting is a proven instance of a situation where dynamically evolving closed quantum systems locally appear as if they had truly relaxed, to maximum entropy states for fixed second moments. This furthers the understanding of relaxation in suddenly quenched quantum many-body systems. The proof features a non-commutative central limit theorem for non-i.i.d. random variables, showing convergence to Gaussian characteristic functions, giving rise to trace-norm closeness. We briefly link our findings to the ideas of typicality and concentration of measure.


Physical Review A | 2006

Entanglement-area law for general bosonic harmonic lattice systems

M. Cramer; Jens Eisert; Martin B. Plenio; J. Dreissig

We demonstrate that the entropy of entanglement and the distillable entanglement of regions with respect to the rest of a general harmonic-lattice system in the ground or a thermal state scale at most as the boundary area of the region. This area law is rigorously proven to hold true in noncritical harmonic-lattice systems of arbitrary spatial dimension, for general finite-ranged harmonic interactions, regions of arbitrary shape, and states of nonzero temperature. For nearest-neighbor interactions—corresponding to the Klein-Gordon case— upper and lower bounds to the degree of entanglement can be stated explicitly for arbitrarily shaped regions, generalizing the findings of Phys. Rev. Lett. 94, 060503 2005. These higher-dimensional analogs of the analysis of block entropies in the one-dimensional case show that under general conditions, one can expect an area law for the entanglement in noncritical harmonic many-body systems. The proofs make use of methods from entanglement theory, as well as of results on matrix functions of block-banded matrices. Disordered systems are also considered. We moreover construct a class of examples for which the two-point correlation length diverges, yet still an area law can be proven to hold. We finally consider the scaling of classical correlations in a classical harmonic system and relate it to a quantum lattice system with a modified interaction. We briefly comment on a general relationship between criticality and area laws for the entropy of entanglement.


Physical Review Letters | 2008

Exploring local quantum many-body relaxation by atoms in optical superlattices

M. Cramer; A. Flesch; Ian P. McCulloch; Ulrich Schollwöck; Jens Eisert

We establish a setting-atoms in optical superlattices with period 2-in which one can experimentally probe signatures of the process of local relaxation and apparent thermalization in nonequilibrium dynamics without the need of addressing single sites. This opens up a way to explore the convergence of subsystems to maximum entropy states in quenched quantum many-body systems with present technology. Remarkably, the emergence of thermal states does not follow from a coupling to an environment but is a result of the complex nonequilibrium dynamics in closed systems. We explore ways of measuring the relevant signatures of thermalization in this analogue quantum simulation of a relaxation process, exploiting the possibilities offered by optical superlattices.


Physical Review Letters | 2011

Measuring entanglement in condensed matter systems.

M. Cramer; Martin B. Plenio; Harald Wunderlich

We show how entanglement may be quantified in spin and cold atom many-body systems using standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory, and a lower bound to the entanglement can be read off directly from the scattering cross section of neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative experimental study of genuine quantum correlations in many-body systems: The need for a full characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented here relies solely on global measurements that are routinely performed and is versatile enough to accommodate systems and measurements different from the ones we exemplify in this work.


New Journal of Physics | 2006

Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices

M. Cramer; Jens Eisert

We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free (Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs.


Physical Review Letters | 2007

Statistics Dependence of the Entanglement Entropy

M. Cramer; Jens Eisert; Martin B. Plenio

The entanglement entropy of a distinguished region of a quantum many-body system reflects the entanglement in its pure ground state. Here we establish scaling laws for this entanglement in critical quasifree fermionic and bosonic lattice systems, without resorting to numerical means. We consider the setting of D-dimensional half-spaces which allows us to exploit a connection to the one-dimensional case. Intriguingly, we find a difference in the scaling properties depending on whether the system is bosonic-where an area law is proven to hold-or fermionic where we determine a logarithmic correction to the area law, which depends on the topology of the Fermi surface. We find Lifshitz quantum phase transitions accompanied with a nonanalyticity in the prefactor of the leading order term.


Physical Review A | 2008

Probing local relaxation of cold atoms in optical superlattices

A. Flesch; M. Cramer; Ian P. McCulloch; Ulrich Schollwöck; Jens Eisert

In the study of relaxation processes in coherent nonequilibrium dynamics of quenched quantum systems, ultracold atoms in optical superlattices with periodicity 2 provide a very fruitful test ground. We consider the dynamics of a particular, experimentally accessible initial state prepared in a superlattice structure evolving under a Bose-Hubbard Hamiltonian in the entire range of interaction strengths, further investigating the issues raised by Cramer et al. [Phys. Rev. Lett. 101, 063001 (2008)]. We investigate the relaxation dynamics analytically in the noninteracting and hard-core bosonic limits, deriving explicit expressions for the dynamics of certain correlation functions, and numerically for finite interaction strengths using the time-dependent density-matrix renormalization (t-DMRG) approach. We can identify signatures of local relaxation that can be accessed experimentally with present technology. While the global system preserves the information about the initial condition, locally the system relaxes to the state having maximum entropy respecting the constraints of the initial condition. For finite interaction strengths and finite times, the relaxation dynamics contains signatures of the relaxation dynamics of both the noninteracting and hard-core bosonic limits.


Physical Review A | 2006

Half the entanglement in critical systems is distillable from a single specimen

Roman Orus; Jose I. Latorre; Jens Eisert; M. Cramer

We establish a quantitative relationship between the entanglement content of a single quantum chain at a critical point and the corresponding entropy of entanglement. We find that, surprisingly, the leading critical scaling of the single-copy entanglement with respect to any bipartitioning is exactly one-half of the entropy of entanglement, in a general setting of conformal field theory and quasifree systems. Conformal symmetry imposes that the single-copy entanglement scales as

Collaboration


Dive into the M. Cramer's collaboration.

Top Co-Authors

Avatar

Jens Eisert

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Flesch

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. M. Dawson

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge