Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. D. Baker is active.

Publication


Featured researches published by M. D. Baker.


Nuclear Physics | 2005

The PHOBOS Perspective on Discoveries at RHIC

B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; Bruce Becker; Russell Richard Betts; A. A. Bickley; R. Bindel; A. Budzanowski; Wit Busza; A. Carroll; Z. Chai; M.P. Decowski; E. García; T. Gburek; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; A.S. Harrington; M. Hauer; G.A. Heintzelman; C. Henderson; David Jonathan Hofman; R. S. Hollis; R. Holynski; Burt Holzman; A. Iordanova; E. Johnson

This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au+Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au+Au at different centralities, the dependence of the yield on the number of participants at higher p T (∼4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as “extended longitudinal scaling”. Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.


Physical Review C | 2011

Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies

B. Alver; B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; Z. Chai; V. Chetluru; M.P. Decowski; E. García; T. Gburek; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane

Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |{eta}|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dN{sub ch}/d{eta} and the total charged-particle multiplicity N{sub ch} are found to factorize into a product of independent functions of collision energy, {radical}(s{sub N{sub N}}), and centrality given in terms of the number of nucleons participating in the collision, N{sub part}. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lns{sub N{sub N}}){sup 2} over the full range of collision energy of {radical}(s{sub N{sub N}})=2.7-200 GeV.


Physics Letters B | 2004

Charged hadron transverse momentum distributions in Au+Au collisions at sNN=200 GeV

B. B. Back; M. D. Baker; D.S. Barton; R. R. Betts; M. Ballintijn; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were measured for transverse momenta p_T from 0.25 to 4.5 GeV/c in a rapidity range of 0.2 < y_pi < 1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at high p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.


Physical Review C | 2004

Collision geometry scaling of Au+Au pseudorapidity density from √SNN=19.6 to 200 GeV

B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

The centrality dependence of the midrapidity charged particle multiplicity in Au+Au collisions at sqrt(s_NN) = 19.6 and 200 GeV is presented. Within a simple model, the fraction of hard (scaling with number of binary collisions) to soft (scaling with number of participant pairs) interactions is consistent with a value of x = 0.13 +/- 0.01(stat) +/- 0.05(syst) at both energies. The experimental results at both energies, scaled by inelastic p(pbar)+p collision data, agree within systematic errors. The ratio of the data was found not to depend on centrality over the studied range and yields a simple linear scale factor of R_(200/19.6) = 2.03 +/- 0.02(stat) +/- 0.05(syst).


Physical Review Letters | 2003

Ratios of charged antiparticles-to-particles near mid-rapidity in Au + Au collisions at √sNN = 130 GeV

B. B. Back; M. D. Baker; D.S. Barton; R. R. Betts; M. Ballintijn; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich

We have measured the ratios of antiparticles to particles for charged pions, kaons, and protons near mid-rapidity in central Au+Au collisions at sqrt[s(NN)] = 130 GeV. We observe / = 1.00+/-0.01(stat)+/-0.02(syst), / = 0.91+/-0.07(stat)+/-0.06(syst), and / = 0.60+/-0.04(stat)+/-0.06(syst). The / and / ratios give a consistent estimate of the baryo-chemical potential mu(B) of 45 MeV, a factor of 5-6 smaller than in central Pb+Pb collisions at sqrt[s(NN)] = 17.2 GeV.


Physical Review C | 1999

Centrality dependence of kaon yields in Si + A and Au + Au collisions at the AGS

L. Ahle; M. J. LeVine; D.S. Woodruff; O. Hansen; W. L. Kehoe; Y. Wang; S.Y. Fung; H.E. Wegner; B. Budick; C. Y. Chi; K. Yagi; D. P. Morrison; P. Rothschild; W. Eldredge; S. Gushue; C.G. Parsons; Y. Wu; F. Videbaek; E. G. Judd; G.H. Xu; R. Morse; J.H. van Dijk; C. Chasman; O. Vossnack; M. J. Tannenbaum; X. Yang; F. Wang; T. Sung; Y. Miake; H. Sakurai

Charged kaon production has been measured in Si+Al and Si+Au collisions at 14.6 A GeV/c, and Au+Au collisions at 11.1 A GeV/c by Experiments 859 and 866 (the E--802 Collaboration) at the BNL AGS. Invariant transverse mass spectra and rapidity distributions for both K+ and K- are presented. The centrality dependence of rapidity-integrated kaon yields is studied. Strangeness enhancement is observed as an increase in the slope of the kaon yield with the total number of participants as well as the yield per participant. The enhancement starts with peripheral Si+Al and Si+Au collisions (relative to N+N) and appears to saturate for a moderate number of participating nucleons in Si+Au collisions. It is also observed to increase slowly with centrality in Au+Au collisions, to a level in the most central Au+Au collisions that is greater than that found in central Si+A collisions. The enhancement factor for


Nuclear Physics | 2003

Flow and bose-einstein correlations in Au-Au collisions at RHIC

Steven L. Manly; B. B. Back; M. D. Baker; D.S. Barton; R.R. Betts; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; M.P. Decowski; E. García; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; C. Henderson; David Jonathan Hofman; R. S. Hollis; R. Hołyinski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich; Chia-Ming Kuo; Willis Lin

K^+


Physical Review Letters | 2005

Centrality Dependence of Charged Hadron Transverse Momentum Spectra inAu+AuCollisions fromsNN=62.4to 200 GeV

B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; A. A. Bickley; R. Bindel; W. Busza; A. Carroll; Z. Chai; M.P. Decowski; E. Garcia; T. Gburek; N. George; K. Gulbrandsen; C. Halliwell; J. Hamblen; M. Hauer; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane; N. Khan; P. Kulinich; C. M. Kuo; Willis Lin

production are 3.0 +-0.2(stat.) +-0.4(syst.) and 4.0 +-0.3(stat.) +-0.5(syst.), respectively, for the most central 7% Si+Au collisions and the most central 4% Au+Au collisions relative to N+N at the correponding beam energy.


Physical Review C | 2007

Identified hadron transverse momentum spectra in Au+Au collisions at {radical}(s{sub NN})=62.4 GeV

B. B. Back; M. D. Baker; D.S. Barton; A. Carroll; Z. Chai; N. George; M. Hauer; B. Holzman; R. Pak; H. Seals; I. Sedykh; M. A. Stankiewicz; P. Steinberg; A. Sukhanov; M. Ballintijn; W. Busza; M.P. Decowski; K. Gulbrandsen; C. Henderson; J.L. Kane

Abstract Argonne flow and Bose-Einstein correlations have been measured in Au-Au collisions at S N N = 130 and 200 GeV using the PHOBOS detector at RHIC. The systematic dependencies of the flow signal on the transverse momentum, pseudorapidity, and centrality of the collision, as well as the beam energy are shown. In addition, results of a 3-dimensional analysis of two-pion correlations in the 200 GeV data are presented.


Physical Review Letters | 2006

System Size and Centrality Dependence of Charged Hadron Transverse Momentum Spectra inAu+AuandCu+CuCollisions atsNN=62.4and 200 GeV

B. Alver; B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; R. Bindel; W. Busza; Z. Chai; V. Chetluru; E. Garcia; T. Gburek; K. Gulbrandsen; J. Hamblen; I. Harnarine; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; J.L. Kane; P. Kulinich; C. M. Kuo; W. Li; Willis Lin; C. Loizides; S. Manly; A. C. Mignerey; R. Nouicer

We have measured transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 62.4 GeV. The spectra are presented for transverse momenta 0.25<p_T<4.5 GeV/c, in a pseudo-rapidity range of 0.2<eta<1.4. The nuclear modification factor R_AA is calculated relative to p+p data at the same collision energy as a function of collision centrality. For p_T>2 GeV/c, R_AA is found to be significantly larger than in Au+Au collisions at sqrt(s_NN) =130 and 200 GeV. In contrast, we find that the evolution of the invariant yields per participant pair from peripheral to central collisions is approximately energy independent over this range of collision energies. This observation challenges models of high p_T hadron suppression in terms of parton energy loss.

Collaboration


Dive into the M. D. Baker's collaboration.

Top Co-Authors

Avatar

B. B. Back

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D.S. Barton

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Busza

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

K. Gulbrandsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

C. Henderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

N. George

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Halliwell

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

M. Ballintijn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Johnson

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge