M.D. Gil García
University of Almería
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.D. Gil García.
Chemometrics and Intelligent Laboratory Systems | 1997
F. Cuesta Sánchez; Sarah C. Rutan; M.D. Gil García; D.L. Massart
Abstract The orthogonal projection approach (OPA), a stepwise approach developed for the determination of the number of compounds present in a multicomponent system, has been extended by including a step that allows the chromatographic and spectroscopic pure compound profiles to be determined. This is done using an alternating least-squares procedure. The initial estimations are the spectra selected in the first step of OPA. The performance of the OPA algorithm is compared with that of two window-based self-modelling curve resolution approaches: evolving factor analysis (EFA) and window factor analysis (WFA).
Analytica Chimica Acta | 2012
M.M. Parrilla Vázquez; P. Parrilla Vázquez; M. Martínez Galera; M.D. Gil García
An ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) procedure was developed for the extraction of eight fluoroquinolones (marbofloxacin, norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, oxolinic acid and nalidixic acid) in groundwater, using high-performance liquid chromatography with fluorescence detection (HPLC-FD). The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution using a small volume of disperser solvent (0.4 mL of methanol), which increased the extraction efficiency and reduced the equilibrium time. For the DLLME procedure, the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM] [PF(6)]) and methanol (MeOH) were used as extraction and disperser solvent, respectively. By comparing [C(8)MIM] [PF(6)] with 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM] [PF(6)]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)MIM] [PF(6)]) as extraction solvents, it was observed that when using [C(8)MIM] [PF(6)] the cloudy solution was formed more readily than when using [C(6)MIM] [PF(6)] or [C(4)MIM] [PF(6)]. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, cooling in ice-water, sonication time, centrifuging time, sample pH and ionic strength, were optimised. A slight increase in the recoveries of fluoroquinolones was observed when an ice-water bath extraction step was included in the analytical procedure (85-107%) compared to those obtained without this step (83-96%). Under the optimum conditions, linearity of the method was observed over the range 10-300 ng L(-1) with correlation coefficient >0.9981. The proposed method has been found to have excellent sensitivity with limit of detection between 0.8 and 13 ng L(-1) and precision with relative standard deviation values between 4.8 and 9.4% (RSD, n=5). Good enrichment factors (122-205) and recoveries (85-107%) were obtained for the extraction of the target analytes in groundwater samples. This simple and economic method has been successfully applied to analyse real groundwater samples with satisfactory results.
Journal of Chromatography A | 2013
M.M. Parrilla Vázquez; P. Parrilla Vázquez; M. Martínez Galera; M.D. Gil García; Ana Uclés
A simple, rapid, low environmental toxicity and sensitive ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) procedure was developed for the extraction of nine pharmaceuticals (paracetamol, metoprolol, bisoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, flufenamic acid and tolfenamic acid) in wastewater, and their determination using high-performance liquid chromatography with a hybrid triple quadrupole-linear ion trap-mass spectrometer (LC-QqLIT-MS). The IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C8MIM][PF6]) and acetonitrile (ACN) were used as extraction and disperser solvent, respectively, for the DLLME procedure, instead of using toxic chlorinated solvent. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, cooling in ice-water, sonication time, centrifuging time, sample pH and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution using a small volume of disperser solvent (0.5mL of acetonitrile), which increased the extraction efficiency and reduced the equilibrium time. A slight increase in the recoveries of pharmaceuticals was observed when an ice-water bath extraction step was included in the analytical procedure. In this way, enrichment factors between 255 and 340 were obtained. Data acquisition in selected reaction monitoring mode (SRM), allowed the simultaneous identification and quantification of the analytes using two transitions (SRM1 and SRM2). Additionally, the information dependent acquisition (IDA) scan was performed to carry out the identification of those analytes whose second transition was absent or was present at low intensity, also providing extra confirmation for the other analytes. The optimized US-IL-DLLME-LC-QqLIT-MS method showed a good precision level, with relative standard deviation values between 1.1% and 11.3%. Limits of detection and quantification were in the range 0.2-60ngL(-1) and 1.0-142ngL(-1), respectively. Good enrichment factors (255-340) and recoveries (88-111%) were obtained for the extraction of the target analytes in wastewater samples. This method has been successfully applied to analyze effluent wastewater samples from a municipal wastewater treatment plant located in Almería (Spain) and the results indicated the presence of flufenamic acid and metoprolol in concentration levels of 0.1 and 1.3μgL(-1), respectively.
Journal of Chromatography A | 2008
L. Vera-Candioti; M.D. Gil García; M. Martínez Galera; Héctor C. Goicoechea
In the present work, an analytical method for the simultaneous determination of seven non steroidal anti-inflammatory drugs (naproxen, ketoprofen, diclofenac, piroxicam, indomethacin, sulindac and diflunisal) and the anticonvulsant carbamazepine is reported. The method involves preconcentration and clean-up by solid-phase microextraction using polydimethylsiloxane/divinylbenzene fibers, followed by liquid chromatography with diode array detection analysis. Parameters that affect the efficiency of the solid-phase microextraction step such as soaking solvent, soaking period, desorption period, stirring rate, extraction time, sample pH, ionic strength, organic solvent and temperature were investigated using a Plackett-Burman screening design. Then, the factors presenting significant positive effects on the analytical response (soaking period, stirring rate, stirring time) were considered in a further central composite design to optimize the operational conditions for the solid phase microextraction procedure. Additionally, multiple response simultaneous optimization by using the desirability function was used to find the optimum experimental conditions for the on-line solid-phase microextraction of analytes in river water samples coupled to liquid chromatography and diode array detection. The best results were obtained using a soaking period of 5 min, stirring rate of 1400 rpm and stirring time of 44 min. The use of solid-phase microextraction technique avoided matrix effect and allowed to quantify the analytes in river water samples by using Milli-Q based calibration graphs. Recoveries ranging from 71.6% to 122.8% for all pharmaceuticals proved the accuracy of the proposed method in river water samples. Method detection limits were in the range of 0.5-3.0 microgL(-1) and limits of quantitation (LOQs) were between 1.0 and 4.0 microgL(-1) for pharmaceutical compounds in river water samples. The expanded uncertainty associated to the measurement of the concentration ranged between 8.5% and 29.0% for 20 microgL(-1) of each analyte and between 9.0% and 29.5% for the average of different concentration levels. The main source of uncertainty was the calibration step in both cases.
Journal of Chromatography A | 1996
M. Martínez Galera; J. L. Martínez Vidal; A. Garrido Frenich; M.D. Gil García
Abstract The partial least-squares (PLS-2) method was applied to the simultaneous determination of the pyrethroids cypermethrin, fenvalerate and cis-trans -permethrin by HPLC. The PLS-2 method was also applied to the resolution of the ternary mixtures of cypermethrin, fenvalerate and trans -permethrin, cis -permethrin being determined from a calibration graph. The results obtained were compared and the best solution was applied to determine the four pyrethroids in soil and groundwater samples.
Talanta | 2011
Héctor C. Goicoechea; María J. Culzoni; M.D. Gil García; M. Martínez Galera
This overview covers the different chemometric strategies linked to chromatographic methodologies that have been used and presented in the recent literature to cope with problems related to incomplete separation, the presence of unexpected components in the sample, matrix effect and changes in the analytical signal due to pre-treatment of sample. Among the different chemometric strategies it focuses on pre-treatment of data to correct background and time shift of chromatographic peaks and the use of second-order algorithms to cope with overlapping peaks from analytes or from analytes and interferences in liquid chromatography coupled to diode array, fast-scanning fluorescence spectroscopy and mass spectrometry detectors. Finally the review presents the strategies used to deal with changes in the analytical response as result of matrix effect in liquid and gas chromatography, as well as the use of standardization strategies to correct modifications in the analytical signal as a consequence of sample pre-treatment in liquid chromatography.
Journal of Chromatography A | 2009
M.D. Gil García; F. Cañada Cañada; María J. Culzoni; L. Vera-Candioti; Gabriel G. Siano; Héctor C. Goicoechea; M. Martínez Galera
An analytical method for the simultaneous determination of seven non-steroidal anti-inflammatory drugs (naproxen, ketoprofen, diclofenac, piroxicam, indomethacin, sulindac and diflunisal) and the anticonvulsant carbamazepine in river and wastewater is reported. The method involves pre-concentration and clean-up by solid-phase microextraction using polydimethylsiloxane/divinylbenzene fibers, followed by liquid chromatography with diode array detection analysis. Owing to the fact that river water samples did not contain interferences and no sensitivity changes due to sample matrix were observed, external calibration was implemented. Standardization was also applied in order to carry out the prediction step by preparing only two diluted standards that were subjected to the pre-concentration step and a set of standards prepared in solvent. For the analysis of wastewater samples, in contrast, it was necessary to implement standard addition calibration in combination with the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm, which allowed us to overcome matrix effect and exploit the second order advantage. Recoveries ranging from 72% to 125% for all pharmaceuticals proved the accuracy of the proposed method in river water samples. On the other hand, wastewater sample recoveries ranged from 83% to 140% for all pharmaceuticals, showing an acceptable performance - considering this sample contains no modeled interferences.
Journal of Chromatography A | 2013
S. Dahane; M.D. Gil García; M.J. Martínez Bueno; A. Uclés Moreno; M. Martínez Galera; A. Derdour
The present paper describes a solid-phase extraction by packed multi-walled carbon nanotubes, followed by liquid chromatography-mass spectrometry, method for the determination of some of the most consumed drugs including four β-blockers and eight non-steroidal anti-inflammatory drugs, in river and wastewater samples. High extraction efficiency was found for most drugs due to the large specific surface area and high adsorption capacity of this nanomaterial compared with other conventional solid-phase extraction sorbents, and matrix effect was present only for two of the twelve studied drugs. Only 20mg of carbon nanotubes was enough to preconcentrate the analytes with recoveries from 68% to 107% for most of them. The pharmaceuticals were analyzed by liquid chromatography coupled to a hybrid triple quadrupole-linear ion trap-mass spectrometer at ultra-trace levels. Data acquisition was carried out in selected reaction monitoring mode, using two transitions for simultaneous identification and quantification of the analytes. Additionally, an information dependent acquisition scan was performed to carry out the identification of those analytes whose second transition was absent or was present at low intensity. The analytical performance of the whole method was evaluated in two environmental water matrices (river and wastewaters). Matrix effect was not found in river water, quantitation being carried out with calibration graphs built with solvent based standard. On the contrary, matrix effect was present in wastewater for some of the target drugs and, therefore, quantitation was carried out using the standard addition method. Limits of detection and quantitation in river waters were in the range of 9-36 and 23-121ngL(-1), respectively and the relative standard deviation of the full method was less than 17%. The proposed methodology was applied to the analysis of three river water and two wastewater (influent and effluent) samples, all of them from Almería (Spain). Some pharmaceuticals were found in river water at concentration levels near to or lower than their quantitation limits, whereas the most consumed pharmaceuticals were found at high concentration levels in influent wastewater and were not detected or were found at lower levels in the effluent wastewater sample.
Journal of Chromatography A | 2010
M. Martínez Galera; M.D. Gil García; María J. Culzoni; Héctor C. Goicoechea
An analytical method for the simultaneous determination of nine beta-blockers (sotalol atenolol, nadolol, pindolol, metoprolol, timolol, bisoprolol, propanolol and betaxolol) and two analgesics (paracetamol and phenazone) in river water by liquid chromatography and diode array detection is reported. The method involves a modified precolumn switching methodology replacing the small precolumn with a short C18 liquid chromatography column (50 mm x 4.6 mm, 5 microm particle size), thus allowing the preconcentration of large water sample volumes whereas interferences eluting at the first of the chromatogram were discarded to waste. This approach allowed to preconcentrate 30 mL river water samples, modified with 0.4% MeOH, achieving univariate method detection and determination limits ranged between 0.03 and 0.16 microg L(-1) and between 0.2 and 0.5 microg L(-1), respectively, with precision values lower than 9.4% for spiking levels at the quantitation limits of each analyte and lower than 4.0%, except bisoprolol (8.3%), for higher spiking levels (1.0 microg L(-1) of all analytes). Matrix background was reduced in three way data by a baseline correction following the Eilers methodology, whereas multivariate curve resolution and alternating least squares in combination with the standard addition calibration method, applied to these data, coped with overlapping peak, systematic (additive) and proportional (matrix effect) errors. The method was successfully applied for the determination of the target pharmaceuticals in river water from three places in a river stream with acceptable recoveries and precision values, taking into account the complexity of the analytical problem. The joint statistical test for the slope and the intercept of the linear regression between the nominal concentration values versus those predicted, showed that the region computed contained the theoretically expected values (0) for the intercept and (1) for the slope (at a confidence level of 95%), which indicates the absence of both constant and proportional errors in the predicted concentrations.
Ecotoxicology and Environmental Safety | 2003
F. J. Sánchez López; M.D. Gil García; N.P.Sánchez Morito; J. L. Martínez Vidal
Contamination of the American red crayfish, from the Guadiamar riverside, is due to the disastrous toxic spill that occurred on 25 April 1998 in the mining area of Aznalcóllar-Los Frailes, Spain. A high concentration of heavy metals in the waters from the mine pool and their spill to the river Guadiamar was the cause of the destruction of a great number of animal and vegetable organisms. An ICP-MS method for the total determination of heavy metals (Cu, Zn, Pb, and Cd) in whole bodies of American red crayfish (Procambarus clarkii) was used. Metals were extracted from the matrix in a closed-vessel microwave digestion system with nitric acid and hydrogen peroxide. A study of the uncertainty of the method for the determination of metals was carried out; at a concentration of 5 microg/L, the uncertainty was below 34%.