M.D. Pérez
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.D. Pérez.
Bioscience, Biotechnology, and Biochemistry | 2009
Celia Conesa; Carmen Rota; Eduardo Castillo; M.D. Pérez; Miguel Calvo; Lourdes Sánchez
The antibacterial activity of recombinant human lactoferrin from rice (rhLF) compared with that of human milk lactoferrin (hLF) was evaluated against Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes. The hydrolysates of rhLF and hLF were found to be more active than native proteins against E. coli O157:H7, and their activity was independent of their iron saturation. The effect of different heat treatments on the antibacterial activity of apo-rhLF was studied and compared with hLF. We observed that an HTST pasteurization treatment did not affect the antimicrobial activity of lactoferrin against the pathogens studied. Furthermore, the activity of apo-rhLF and hLF against E. coli O157:H7 and L. monocytogenes in UHT milk and whey was assayed, finding a decrease in the number of bacteria, although lower than that observed in a broth medium. This study shows the similar antibacterial activity of rhLF and hLF which is important in order to consider the addition of rhLF as a supplement in special products.
Journal of Dairy Science | 2012
Chafiaa Mazri; Lourdes Sánchez; S.J. Ramos; Miguel Calvo; M.D. Pérez
Lactoferrin and lactoperoxidase are whey proteins with biological properties that may provide health benefits to consumers. These properties are vulnerable to potentially denaturing conditions during processing. High-pressure treatment is an appealing alternative to the traditional heat processing of foods because it exerts an antimicrobial effect without changing the sensory and nutritional quality of foods. In this work, the effect of high-pressure treatment on the denaturation of lactoferrin and lactoperoxidase present in skim milk and whey, and as isolated proteins in buffer, was studied over a pressure range of 450 to 700 MPa at 20°C. Denaturation of lactoferrin was measured by the loss of reactivity with their specific antibodies using a sandwich ELISA. Denaturation of lactoperoxidase was determined by measuring the loss of enzymatic activity using a spectrophotometric technique. No substantial inactivation of lactoperoxidase was observed in any treatment assayed. The concentration of the residual immunoreactive lactoferrin after each pressure treatment was determined, and the data were subjected to kinetic analysis to obtain D and Z values. Denaturation of lactoferrin increased with pressure and holding time, and D values were lower when lactoferrin was treated in whey than in milk, and lower in both whey and milk than in phosphate buffer. Thus, protein is denatured more slowly in buffer and in milk than in whey. Denaturation of lactoferrin in the 3 media was found to follow a reaction order of n=1.5. Volumes of activation of about -34.77, -24.35, and -24.09 mL/mol were obtained for lactoferrin treated in skim milk, whey, and buffer, respectively, indicating a decrease in protein volume under pressure.
Journal of Dairy Science | 2010
Indira Franco; Eduardo Castillo; M.D. Pérez; Miguel Calvo; Lourdes Sánchez
The aim of this work was to study the effect of milk supplementation with lactoferrin of different iron saturation on the manufacturing and characteristics of yogurt. Bovine lactoferrin was added at concentrations of 0.5, 1, and 2 mg/mL in the holo (iron saturated) and apo (without iron) forms. Some physicochemical properties, such as pH, concentration of lactic acid, and texture of supplemented yogurts, were determined throughout the shelf-life period storage (28 d) at 4°C. We also evaluated the stability of lactoferrin in supplemented yogurt throughout the storage time. The supplementation of milk with bovine lactoferrin did not greatly affect the physical properties of the yogurt, though apo-lactoferrin slightly delayed the decrease of pH. This could be attributed to the partial inhibition observed on the growth of Streptococcus thermophilus. The integrity and immunoreactive concentration of lactoferrin, determined by Western blotting and noncompetitive ELISA, respectively, remained constant throughout the shelf life of yogurt.
Biochemistry | 2008
Chockry Barbana; M.D. Pérez; Coloma Pocoví; Lourdes Sánchez; Zeina Wehbi
The interaction of holo-and apo-forms of human α-lactalbumin with fatty acids was studied by a partition equilibrium method. Apo-α-lactalbumin, obtained by treatment with EDTA, displays one binding site for fatty acids, the association constants for oleic and palmitic acids being 1.9·106 and 4.2·105 M−1, respectively. However, holo-α-lactalbumin was unable to bind fatty acids as measured by this technique. Likewise, no fatty acids bound to holo-α-lactalbumin, isolated using nondenaturing conditions, were detected by gas chromatography. These results demonstrate that the conformational change induced in α-lactalbumin by the removal of calcium enables the protein to interact with fatty acids.
Bioscience, Biotechnology, and Biochemistry | 2012
Indira Franco; Eduardo Castillo; M.D. Pérez; Miguel Calvo; Lourdes Sánchez
High pressure was applied to recombinant human lactoferrin obtained from rice (rhLF) and its effect was evaluated on the structure and activity of the protein. Treatments of 400, 500, and 650 MPa for 15 min (20 °C), were applied to rhLF at 2 mg/mL in three iron-saturation forms. The structural characteristics of the treated proteins were analyzed by differential scanning calorimetry (DSC) and by fluorometric analysis, and immunoreactivity by ELISA. Iron retention and binding properties and antibacterial activity against Escherichia coli O157:H7 were also studied. The results obtained indicate that the treatments at 400 and 500 MPa did not greatly modifiy the conformation of lactoferrin, meanwhile treatment at 650 MPa affected in different degrees the three forms of rhLF. With respect to antibacterial activity, only apo rhLF showed antibacterial activity against E. coli, activity that was maintained after treatment at 400 MPa, while holo and AsIs rhLF did not inhibit the growth of E. coli.
Journal of Dairy Science | 2015
F. Navarro; S. Harouna; Miguel Calvo; M.D. Pérez; Lourdes Sánchez
Lactoferrin is a protein with important biological functions that can be obtained from milk and by-products derived from the dairy industry, such as whey. Although bovine lactoferrin has been extensively studied, ovine lactoferrin is not quite as well known. In the present study, the effect of several heat treatments in 3 different media, over a temperature range from 66 to 75°C, has been studied on lactoferrin isolated from sheep milk. Denaturation of lactoferrin was determined by measuring its immunoreactivity with specific polyclonal antibodies. Kinetic and thermodynamic parameters obtained indicate that lactoferrin denatures by heat more rapidly in whey than in phosphate buffer or milk. The value of activation energy found for the denaturation process of lactoferrin when treated in whey is higher (390kJ/mol) than that obtained in milk (194kJ/mol) or phosphate buffer (179kJ/mol). This indicates that a great amount of energy is necessary to start denaturation of ovine lactoferrin, probably due to the interaction of this protein with other whey proteins. The changes in the hydrophobicity of lactoferrin after heat treatments were determined by fluorescence measurement using acrylamide. The decrease in the hydrophobicity constant was very small for the treatments from 66 to 75°C, up to 20min, which indicates that lactoferrin conformation did not experienced a great change. The results obtained in this study permit the prediction of behavior of ovine lactoferrin under several heat treatments and show that high-temperature, short-time pasteurization (72°C, 15 s) does not cause loss of its immunoreactivity and, consequently, would not affect its conformation and biological activity.
Bioscience, Biotechnology, and Biochemistry | 2009
Celia Conesa; Coloma Pocoví; M.D. Pérez; Miguel Calvo; Lourdes Sánchez
The possibility of using recombinant human lactoferrin from rice (rhLF) makes it necessary to study its differences from the protein of milk. In this work, the binding of different iron-saturated forms of rhLF to Caco-2 cells was studied. Iron-saturated rhLF bound in higher proportion than the apo-form, but, the data obtained for specific binding were not compatible with receptor-mediated binding. Competition assays showed the same binding capacity for human milk lactoferrin as for rhLF to Caco-2 cells. Another basic protein of milk, lactoperoxidase, was found to compete with rhLF for binding to Caco-2 cell membranes, suggesting an electrostatic interaction. The transport of iron (59Fe) bound to rhLF and to citrate and the transport of rhLF (125I-labeled) were studied on Caco-2 monolayers. Transport of iron was found to be significantly greater when bound to citrate than to rhLF. The amount of intact lactoferrin that traversed the Caco-2 monolayers was very low, suggesting degradation of it across these cells.
Journal of Agricultural and Food Chemistry | 2008
Celia Conesa; Coloma Pocoví; M.D. Pérez; Miguel Calvo; Lourdes Sánchez
Recombinant human lactoferrin (rhLF) from Aspergillus awamori bound to Caco-2 cell membranes in a saturable manner. The dissociation constant for the apo form was (Kd)=2.2 x 10(-7) M; however, the specific binding of the iron-saturated rhLF and of lactoferrin from human milk (hLF) was too low to calculate the binding parameters. Recombinant human lactoferrin subjected to heat treatment did not lose the ability to bind to cell membranes except at high temperature and long time treatments (85 and 89 degrees C for 40 min) for which there was a slight decrease in the binding. No significant differences have been found in the transport of iron bound to rhLF or to hLF across Caco-2 cell monolayers. Nevertheless, the amount of iron-saturated hLF transported across Caco-2 monolayers was significantly higher than that of rhLF. For both lactoferrins, the amount of intact protein in the lower chamber was about 4.5% of the total radioactivity transported, indicating the degradation of lactoferrin in the passage across Caco-2 cells.
International Dairy Journal | 2006
Chockry Barbana; M.D. Pérez; Lourdes Sánchez; Michèle Dalgalarrondo; Jean-Marc Chobert; T. Haertlé; Miguel Calvo
Journal of Agricultural and Food Chemistry | 2005
Zeina Wehbi; M.D. Pérez; Lourdes Sánchez; Coloma Pocoví; Chokry Barbana; Miguel Calvo