M.D. Rubano
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.D. Rubano.
The Professional Animal Scientist | 2012
K.J. Soder; K. Hoffman; L.E. Chase; M.D. Rubano
ABSTRACT Organic dairies face many challenges, one of which is the high cost of purchased organic grains. Molasses may be a less expensive energy alternative. However, anecdotal results have been mixed for farms that used molasses as the sole energy source. This research project quantified animal performance on an organic dairy farm that fed molasses over 2 grazing seasons. During the 2008 grazing season, the farmer fed organic liquid molasses (1.36 kg of DM/d) and a corn-based grain mixture (0.45 kg of DM/d) per cow to the mixed-breed dairy herd. In 2009, dairy producer concerns about low BCS and milk production resulted in the farmer decreasing molasses (averaging 1.1 kg of DM/d) and increasing corn (1.0 kg of DM/d) supplementation per cow. Milk production and milk fat were similar (P > 0.05) across both years, whereas milk protein was greater (P
Journal of Dairy Science | 2017
S. L. Dillard; A.N. Hafla; Ana I. Roca-Fernández; A.F. Brito; M.D. Rubano; K.J. Soder
A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, volatile fatty acids (VFA) production, bacterial protein synthesis, and methane (CH4) output of warm-season annual grasses. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design using 7 d for adaptation to treatment and 3 d for sample collection. Treatments were (1) 100% orchardgrass (Dactylis glomerata L.; ORD); (2) 50% orchardgrass + 50% Japanese millet [Echinochloa esculenta (A. Braun) H. Scholz; MIL]; (3) 50% orchardgrass + 50% brown midrib sorghum × sudangrass (Sorghum bicolor L. Moench × S. bicolor var. sudanense; SSG]; or (4) 50% orchardgrass + 25% millet + 25% sorghum × sudangrass (MIX). Fermentors were fed 60 g of dry matter (DM)/d in equal portions of herbage 4 times daily (0730, 1030, 1400, and 1900 h). To replicate a typical 12-h pasture rotation, fermentors were fed the orchardgrass at 0730 and 1030 h and the individual treatment herbage (orchardgrass, Japanese millet, sorghum × sudangrass, or 50:50 Japanese millet and sorghum × sudangrass) at 1400 and 1900 h. Gas samples for CH4 analysis were collected 6 times daily at 0725, 0900, 1000, 1355, 1530, and 1630 h. Fermentor pH was determined at the time of feeding, and fermentor effluent samples for NH3-N and VFA analyses were taken daily at 1030 h on d 8, 9, and 10. Samples were also analyzed for DM, organic matter (OM), crude protein, and fiber fractions to determine nutrient digestibilities. Bacterial efficiency was estimated by dividing bacterial N by truly digested OM. True DM and OM digestibilities and pH were not different among treatments. Apparent OM digestibility was greater in ORD than in MIL and SSG. The concentration of propionate was greater in ORD than in SSG and MIX, and that of butyrate was greatest in ORD and MIL. Methane output was greatest in MIL, intermediate in ORD, and lowest in SSG and MIX. Nitrogen intake did not differ across treatments, whereas bacterial N efficiency per kilogram of truly digestible OM was greatest in MIL, intermediate in SSG and MIX, and lowest in ORD. True crude protein digestibility was greater in ORD versus MIL, and ORD had lower total N, non-NH3-N, bacterial N, and dietary N in effluent flows than MIL. Overall, we detected little difference in true nutrient digestibility; however, SSG and MIX provided the lowest acetate to propionate ratio and lower CH4 output than MIL and ORD. Thus, improved warm-season annual pastures (i.e., brown midrib sorghum × sudangrass) could provide a reasonable alternative to orchardgrass pastures during the summer months when such perennial cool-season grass species have greatly reduced productivity.
Journal of Dairy Science | 2016
K.J. Soder; A.F. Brito; A.N. Hafla; M.D. Rubano
A 4-unit dual-flow continuous culture fermentor system was used to assess the effects of supplementing orchardgrass (Dactylis glomerata L.) with 2 levels [5 and 10% of total dry matter (DM) fed] of starchy (barley grain, BAR) or fibrous (beet pulp, BP) carbohydrate sources on nutrient digestibility, volatile fatty acid (VFA) production, bacterial protein synthesis, and CH4 output. Treatments were randomly assigned to fermentors in a 4×4 Latin square design with a 2×2 factorial arrangement using 7 d for microbial adaptation and 3 d for sample collection. Treatments included (1) 57g of DM orchardgrass + 3g of DM BAR, (2) 54g of DM orchardgrass + 6g of DM BAR, (3) 57g of DM orchardgrass + 3g of DM BP, or (4) 54g of DM orchardgrass + 6g of DM BP. Feedings occurred at 0900, 1030, 1400, and 1900h throughout four 10-d periods. Gas samples for CH4 analysis were collected 6 times daily at 0725, 0900, 1000, 1355, 1530, and 1630h. Fermentor samples for pH, NH3-N, and VFA analysis were taken on d 8, 9, and 10. Samples were also analyzed for DM, organic matter, crude protein, purines, neutral detergent fiber, and acid detergent fiber to determine nutrient digestibilities and estimation of bacterial protein synthesis. Apparent and true DM and organic matter digestibilities were not affected by supplement source. Apparent neutral and acid detergent fiber digestibilities were greater for BAR than BP. Conversely, apparent crude protein digestibility was greater for BP than BAR. Mean and maximum pH tended to be greatest for BAR than BP. Minimum pH was greater at the lower level (5% of diet DM) of supplementation. Barley produced greater concentrations of total VFA and acetate, whereas BP had greater daily outputs of CH4. Significant supplement type × level interactions were found for bacterial N flow and efficiency. Overall, supplementing orchardgrass with BP improved crude protein digestibility, reduced fiber digestibility and total VFA concentration, but increased CH4 output compared with BAR.
Journal of Animal Science | 2017
Sandra Leanne Dillard; Ana I. Roca-Fernández; M.D. Rubano; Kyle R. Elkin; K.J. Soder
The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (Brassica rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous culture. Diets were randomly assigned to fermentors in a 4 × 4 Latin square design using 7 d for adaptation and 3 d for collection. Diets were: 1) 50% orchardgrass + 50% annual ryegrass (ARG); 2) 50% orchardgrass + 50% canola (CAN); 3) 50% orchardgrass + 50% rapeseed (RAP); and 4) 50% orchardgrass + 50% turnip (TUR). Feedings (82 g DM/d) occurred four times daily throughout 4, 10-d periods at 730, 1030, 1400, and 1900 h. Methane samples were collected every 10 min using a photoacoustic gas analyzer (LumaSense Technologies, Inc.; Santa Clara, CA) during the last 3 d of the experiment. Effluent samples were collected on d 8, 9, and 10, composited by fermentor, and analyzed for VFA and pH as well as DM, OM, CP, and fiber fractions for determination of nutrient digestibility. Forage samples were analyzed for CP, NDF, ADF, minerals, and glucosinolate (GLS) concentrations. Data were analyzed using the GLIMMIX procedure of SAS. Apparent DM, OM, and NDF digestibilities and true DM and OM digestibilities were similar (P > 0.28) among diets (45.1, 63.2, 44.1, 67.1, and 87.2%, respectively). Total VFA (87.2 mol/100 mol), pH (6.47), and acetate (A: 44.6 mol/100 mol) were also not different (P > 0.20) among diets. The A:P (P = propionate) ratio was greater (P < 0.01) in ARG and CAN than RAP and TUR. Daily CH4 production was greater (P < 0.01) in ARG than all other diets (68.9 vs. 11.2 mg/d). Methane, whether expressed as g per g of OM, NDF, digestible OM, or digestible NDF fed was greatest (P < 0.01) in ARG but similar (P > 0.18) among brassica diets. A significant negative correlation was observed between total GLS and CH4 production. However, when multiple regression analysis on CH4 production was completed, neither total GLS nor individual GLS were a significant component of the model. Addition of brassicas provided similar nutrient digestibility to ARG while reducing daily CH4 production, potentially making brassicas an alternative for ARG in pasture-based ruminant diets.
Journal of Dairy Science | 2014
A.N. Hafla; K.J. Soder; A.F. Brito; M.D. Rubano
A 4-unit dual-flow continuous-culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane (CH4) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement using 7 d for diet adaptation and 3 d for sample collection. Experimental diets were (1) 55.5 g of herbage dry matter (DM) + 4.5 g of SB DM, (2) 56.0 g of herbage DM + 4.0 g of BG DM, (3) 55.5 g of haylage DM + 4.5 g of SB DM, and (4) 56.0 g of haylage DM + 4.0 g of BG DM. Forages were fed at 0730, 1030, 1400, and 1900 h, whereas SB and BG were fed at 0730 and 1400 h. Gas samples for CH₄ analysis were collected at 0725, 0900, 1000, 1355, 1530, and 1630 h on d 8, 9, and 10. Fluid samples were taken once daily on d 8, 9, and 10 for pH measurements and for ammonia-N and VFA analysis and analyzed for DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of nutrient digestibilities and estimation of bacterial protein synthesis. Orthogonal contrasts were used to compare the effect of forage source (haylage vs. herbage), supplement (BG vs. SB), and the forage × supplement interaction. Apparent and true DM and organic matter digestibilities as well as apparent crude protein digestibility were not affected by forage source. However, true DM digestibility was greatest for diets supplemented with SB. Apparent neutral and acid detergent fiber digestibilities of herbage-based diets were higher than haylage-based diets but fiber digestibility was not affected by supplement. Diets supplemented with SB had higher mean and minimum pH than BG; however, maximum pH was not affected by diet. Supplementation with BG produced a greater concentration of total VFA compared with diets supplemented with SB. Haylage-based diets produced greater CH4 output compared with herbage-based diets but supplementation did not affect CH4 output. Efficiency of bacterial protein synthesis was greater for herbage-based diets compared with haylage-based diets, with no effect of supplementation. Overall, supplementation with SB marginally increased true DM digestibility of herbage- and haylage-based diets but did not affect fiber and crude protein digestibilities, CH4 output, and bacterial efficiency, compared with BG.
Journal of Dairy Science | 2017
A.F. Brito; K.J. Soder; P.Y. Chouinard; Simone F. Reis; S. Ross; M.D. Rubano; M.D. Casler
The objective of this study was to compare the effects of ground corn or liquid molasses fed as the sole supplemental nonstructural carbohydrate (NSC) source on production performance, milk fatty acid (FA) profile, grazing behavior, and N metabolism in grazing dairy cows. A strip-grazing management system was used, with cows offered a new strip of fresh herbage after each milking, resulting in approximately 16 h of access to pasture daily. Animals were fed a diet formulated to yield an 86:14 forage-to-concentrate ratio consisting [dry matter (DM) basis] of 74% mixed grass-legume herbage, 12% mixed-mostly legume baleage, 12% NSC source, and 2% mineral-vitamin premix. Twenty Jersey cows averaging (mean ± standard deviation) 121 ± 73 d in milk in the beginning of the study were randomly assigned to 1 of 2 herbage supplementation treatments: (1) baleage plus ground corn (B+GC) or (2) baleage + liquid molasses (B+LM). Both NSC sources were fed at a flat rate of 1.6 kg of DM/cow daily. The study lasted from June to September for a total of 15 wk with data and sample collection conducted in wk 3, 7, 12, and 15. Milk samples for FA analysis were collected in wk 2, 4, 6, 8, 9, 11, and 13. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) for a randomized complete block design with repeated measures over time. Treatment × week interactions were observed for supplement DM intake, milk urea N, bite rate, urinary excretion of uric acid, and milk FA (e.g., 17:0, 18:0, cis-9,trans-11 18:2). Supplement DM intake was greatest in cows fed B+LM in wk 7, 12, and 15. Compared with cows fed B+GC, those fed B+LM had lower concentrations of milk urea N in wk 7 and 15. Milk yield, concentrations and yields of milk components, and plasma concentrations of essential AA, except Met, which was lowest with feeding B+LM, were not affected by supplementation. The plasma concentration of urea N was lowest with feeding B+LM. Cows fed B+GC spent more time grazing than those fed B+LM. Feeding B+GC increased cis-9 18:1 FA and most trans-18:1 FA in milk, whereas B+LM increased Σ odd-chain FA, Σ n-3 FA, and the trans-11 18:1 to trans-10 18:1 ratio, and decreased the n-6 to n-3 ratio. Based on current results, B+LM can entirely replace B+GC without negatively affecting milk yield or yields and concentrations of milk fat and true protein, while decreasing milk urea N, plasma urea N, and the milk trans-11 18:1 to trans-10 18:1 ratio, and increasing Σ n-3 FA.
Journal of Dairy Science | 2013
K.J. Soder; A.F. Brito; M.D. Rubano
A 4-unit continuous culture fermentor system was used to evaluate the effects of oilseed supplementation of an herbage-based diet on nutrient digestibility, fermentation profile, and bacterial nitrogen (N) synthesis. Treatments were randomly assigned to fermentors in a 4×4 Latin square design with 7d for diet adaptation and 3d for data and sample collection. Dietary treatments were an herbage-only diet (HERB), or the following ground oilseeds supplemented to an herbage-based diet at 10% of total dry matter (DM) fed: flaxseed (FLAX), canola (CAN), or sunflower (SUN). Apparent DM, organic matter, and neutral detergent fiber digestibility were not affected by diet, averaging 62, 68, and 78%, respectively. True DM and organic matter digestibility were not affected by diet, averaging 78 and 82%, respectively. Fermentor pH and total volatile fatty acids were not affected by diet. Branched-chain volatile fatty acids tended to be lower for HERB compared with the 3 oilseed diets. Ammonia N concentrations were lowest for the HERB diet. Crude protein digestibility was not affected by diet. Flow of NH3-N was lowest for the HERB diet reflecting the lowest culture concentration of NH3-N. Bacterial N flows were lowest for HERB and SUN diets, intermediate for FLAX, and greatest for CAN. Flows of total N, non-NH3-N, and dietary N were not affected by diet. Likewise, efficiency of bacterial N synthesis was not affected by diet. Supplementation with FLAX, CAN, or SUN at 10% of total DM fed did not affect nutrient digestibility or ruminal fermentation compared with an all-herbage diet. The oilseeds tested herein may be considered as alternative energy supplements for grazing dairy cows, particularly during times of low availability of corn. However, in vivo studies are needed to further evaluate the effects of oilseeds supplementation of an herbage-based diet on milk production and composition (specifically human-beneficial fatty acids).
The Professional Animal Scientist | 2016
A.N. Hafla; K.J. Soder; A.F. Brito; Richard Kersbergen; Fay Benson; Heather Darby; M.D. Rubano; Simone F. Reis
The Professional Animal Scientist | 2014
A.N. Hafla; K.J. Soder; M. Hautau; M.D. Rubano; B. Moyer; Robert Stout
Agricultural & Environmental Letters | 2016
S. Leanne Dillard; A.N. Hafla; M.D. Rubano; Robert Stout; A.F. Brito; K.J. Soder