Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Dennis Leo is active.

Publication


Featured researches published by M. Dennis Leo.


American Journal of Physiology-heart and Circulatory Physiology | 2011

TMEM16A channels generate Ca2+-activated Cl− currents in cerebral artery smooth muscle cells

Candice M. Thomas-Gatewood; Zachary P. Neeb; Simon Bulley; Adebowale Adebiyi; John P. Bannister; M. Dennis Leo; Jonathan H. Jaggar

Transmembrane protein (TMEM)16A channels are recently discovered membrane proteins that display electrophysiological properties similar to classic Ca(2+)-activated Cl(-) (Cl(Ca)) channels in native cells. The molecular identity of proteins that generate Cl(Ca) currents in smooth muscle cells (SMCs) of resistance-size arteries is unclear. Similarly, whether cerebral artery SMCs generate Cl(Ca) currents is controversial. Here, using molecular biology and patch-clamp electrophysiology, we examined TMEM16A channel expression and characterized Cl(-) currents in arterial SMCs of resistance-size rat cerebral arteries. RT-PCR amplified transcripts for TMEM16A but not TMEM16B-TMEM16H, TMEM16J, or TMEM16K family members in isolated pure cerebral artery SMCs. Western blot analysis using an antibody that recognized recombinant (r)TMEM16A channels detected TMEM16A protein in cerebral artery lysates. Arterial surface biotinylation and immunofluorescence indicated that TMEM16A channels are located primarily within the arterial SMC plasma membrane. Whole cell Cl(Ca) currents in arterial SMCs displayed properties similar to those generated by rTMEM16A channels, including Ca(2+) dependence, current-voltage relationship linearization by an elevation in intracellular Ca(2+) concentration, a Nerstian shift in reversal potential induced by reducing the extracellular Cl(-) concentration, and a negative reversal potential shift when substituting extracellular I(-) for Cl(-). A pore-targeting TMEM16A antibody similarly inhibited both arterial SMC Cl(Ca) and rTMEM16A currents. TMEM16A knockdown using small interfering RNA also inhibited arterial SMC Cl(Ca) currents. In summary, these data indicate that TMEM16A channels are expressed, insert into the plasma membrane, and generate Cl(Ca) currents in cerebral artery SMCs.


Science Signaling | 2015

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation

Michelle N. Sullivan; Albert L. Gonzales; Paulo W. Pires; Allison Bruhl; M. Dennis Leo; Wencheng Li; Agathe Oulidi; Frederick A. Boop; Yumei Feng; Jonathan H. Jaggar; Donald G. Welsh; Scott Earley

Peroxidized lipid metabolites trigger calcium influx through the channel TRPA1 to dilate cerebral arteries. Blood Vessel Dilation with Peroxidized Lipids Cerebral arteries must maintain constant blood flow to the brain even though blood pressure fluctuates constantly. Sullivan et al. characterized a signaling pathway that is specific to the endothelial cells that line cerebral arteries. Reactive oxygen species (ROS) cause lipid peroxidation. In endothelial cells in cerebral arteries, locally produced ROS oxidized lipids, which triggered calcium influx through the ion channel TRPA1. In turn, this calcium influx activated a potassium-permeable channel, resulting in dilation of cerebral arteries. Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca2+ signals representing Ca2+ influx through single TRPA1 channels, which we called “TRPA1 sparklets.” TRPA1 sparklet activity was low under basal conditions but was stimulated by NOX-generated ROS. Ca2+ entry during a single TRPA1 sparklet was twice that of a TRPV4 sparklet and ~200 times that of an L-type Ca2+ channel sparklet. TRPA1 sparklets representing the simultaneous opening of two TRPA1 channels were more common in endothelial cells than in human embryonic kidney (HEK) 293 cells expressing TRPA1. The NOX-induced TRPA1 sparklets activated intermediate-conductance, Ca2+-sensitive K+ channels, resulting in smooth muscle hyperpolarization and vasodilation. NOX-induced activation of TRPA1 sparklets and vasodilation required generation of hydrogen peroxide and lipid-peroxidizing hydroxyl radicals as intermediates. 4-Hydroxy-nonenal, a metabolite of lipid peroxidation, also increased TRPA1 sparklet frequency and dilated cerebral arteries. These data suggest that in the cerebral circulation, lipid peroxidation metabolites generated by ROS activate Ca2+ influx through TRPA1 channels in the endothelium of cerebral arteries to cause dilation.


The Journal of General Physiology | 2010

Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells

Guiling Zhao; Zachary P. Neeb; M. Dennis Leo; Judith Pachuau; Adebowale Adebiyi; Kunfu Ouyang; Ju Chen; Jonathan H. Jaggar

Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dynamic regulation of β1 subunit trafficking controls vascular contractility

M. Dennis Leo; John P. Bannister; Damodaran Narayanan; Anitha Nair; Jordan E. Grubbs; Kyle S. Gabrick; Frederick A. Boop; Jonathan H. Jaggar

Significance Plasma membrane ion channels composed of pore-forming and auxiliary subunits regulate physiological functions in virtually all cell types. A conventional view is that ion channels assemble with their auxiliary subunits prior to surface trafficking of the multiprotein complex. Arterial myocytes express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that modulate contractility and blood pressure and flow. The data here show that although most BKα subunits are plasma membrane-resident, β1 subunits are primarily intracellular in arterial myocytes. Nitric oxide, an important vasodilator, stimulates rapid surface trafficking of β1 subunits, which associate with, and activate, BK channels, leading to vasodilation. Thus, we show that rapid auxiliary subunit trafficking is a unique mechanism to control functional surface ion channel activity. Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca2+ sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels

Guo Hua Liang; Adebowale Adebiyi; M. Dennis Leo; Elizabeth M. McNally; Charles W. Leffler; Jonathan H. Jaggar

Hydrogen sulfide (H(2)S) is a gaseous signaling molecule that appears to contribute to the regulation of vascular tone and blood pressure. Multiple potential mechanisms of vascular regulation by H(2)S exist. Here, we tested the hypothesis that piglet cerebral arteriole smooth muscle cells generate ATP-sensitive K(+) (K(ATP)) currents and that H(2)S induces vasodilation by activating K(ATP) currents. Gas chromatography/mass spectrometry data demonstrated that after placing Na(2)S, an H(2)S donor, in solution, it rapidly (1 min) converts to H(2)S. Patch-clamp electrophysiology indicated that pinacidil (a K(ATP) channel activator), Na(2)S, and NaHS (another H(2)S donor) activated K(+) currents at physiological steady-state voltage (-50 mV) in isolated cerebral arteriole smooth muscle cells. Glibenclamide, a selective K(ATP) channel inhibitor, fully reversed pinacidil-induced K(+) currents and partially reversed (∼58%) H(2)S-induced K(+) currents. Western blot analysis indicated that piglet arterioles expressed inwardly rectifying K(+) 6.1 (K(ir)6.1) channel and sulfonylurea receptor 2B (SUR2B) K(ATP) channel subunits. Pinacidil dilated pressurized (40 mmHg) piglet arterioles, and glibenclamide fully reversed this effect. Na(2)S also induced reversible and repeatable vasodilation with an EC(50) of ∼30 μM, and this effect was partially reversed (∼55%) by glibenclamide. Vasoregulation by H(2)S was also studied in pressurized resistance-size cerebral arteries of mice with a genetic deletion in the gene encoding SUR2 (SUR2 null). Pinacidil- and H(2)S-induced vasodilations were smaller in arterioles of SUR2 null mice than in wild-type controls. These data indicate that smooth muscle cell K(ATP) currents control newborn cerebral arteriole contractility and that H(2)S dilates cerebral arterioles by activating smooth muscle cell K(ATP) channels containing SUR2 subunits.


American Journal of Physiology-cell Physiology | 2010

Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells

Rachael Crnich; Gregory C. Amberg; M. Dennis Leo; Albert L. Gonzales; Michael M. Tamkun; Jonathan H. Jaggar; Scott Earley

The melastatin (M) transient receptor potential (TRP) channel TRPM4 mediates pressure and protein kinase C (PKC)-induced smooth muscle cell depolarization and vasoconstriction of cerebral arteries. We hypothesized that PKC causes vasoconstriction by stimulating translocation of TRPM4 to the plasma membrane. Live-cell confocal imaging and fluorescence recovery after photobleaching (FRAP) analysis was performed using a green fluorescent protein (GFP)-tagged TRPM4 (TRPM4-GFP) construct expressed in A7r5 cells. The surface channel was mobile, demonstrating a FRAP time constant of 168 +/- 19 s. In addition, mobile intracellular trafficking vesicles were readily detected. Using a cell surface biotinylation assay, we showed that PKC activation with phorbol 12-myristate 13-acetate (PMA) increased (approximately 3-fold) cell surface levels of TRPM4-GFP protein in <10 min. Similarly, total internal reflection fluorescence microscopy demonstrated that stimulation of PKC activity increased (approximately 3-fold) the surface fluorescence of TRPM4-GFP in A7r5 cells and primary cerebral artery smooth muscle cells. PMA also caused an elevation of cell surface TRPM4 protein levels in intact arteries. PMA-induced translocation of TRPM4 to the plasma membrane was independent of PKCalpha and PKCbeta activity but was inhibited by blockade of PKCdelta with rottlerin. Pressure-myograph studies of intact, small interfering RNA (siRNA)-treated cerebral arteries demonstrate that PKC-induced constriction of cerebral arteries requires expression of both TRPM4 and PKCdelta. In addition, pressure-induced arterial myocyte depolarization and vasoconstriction was attenuated in arteries treated with siRNA against PKCdelta. We conclude that PKCdelta activity causes smooth muscle depolarization and vasoconstriction by increasing the number of TRPM4 channels in the sarcolemma.


The Journal of Physiology | 2013

Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries

Damodaran Narayanan; Simon Bulley; M. Dennis Leo; Sarah K Burris; Kyle S. Gabrick; Frederick A. Boop; Jonathan H. Jaggar

•  Intravascular pressure is reported to activate several mechanosensitive ion channels, leading to smooth muscle cell (SMC) depolarization, voltage‐dependent Ca2+ channel activation and vasoconstriction; a process known as the ‘myogenic response’. •  Polycystin‐1 and ‐2 (TRPP1 and ‐2) have been shown to differentially regulate the mesenteric artery myogenic response, with TRPP2 expression attenuating vasoconstriction. •  We show that TRPP2 is the major TRPP isoform expressed and that TRPP2 is located primarily in the plasma membrane in cerebral artery SMCs. •  Selective TRPP2 knockdown reduced swelling‐induced non‐selective cation currents (ICat) in SMCs and myogenic tone in cerebral arteries. •  These data indicate that TRPP2 activation contributes to the cerebral artery myogenic response and suggest that TRPP2 performs differential functions in different vascular beds.


Circulation Research | 2014

LRRC26 is a Functional BK Channel Auxiliary γ Subunit in Arterial Smooth Muscle Cells

Kirk W. Evanson; John P. Bannister; M. Dennis Leo; Jonathan H. Jaggar

Rationale: Smooth muscle cell (myocyte) large-conductance calcium (Ca)2+-activated potassium (BK) channels are functionally significant modulators of arterial contractility. Arterial myocytes express both pore-forming BK&agr; and auxiliary &bgr;1 subunits, which increase channel Ca2+ sensitivity. Recently, several leucine-rich repeat containing (LRRC) proteins have been identified as auxiliary &ggr; subunits that elevate the voltage sensitivity of recombinant and prostate adenocarcinoma BK channels. LRRC expression and physiological functions in native cell types are unclear. Objective: Investigate the expression and physiological functions of leucine-rich repeat containing protein 26 (LRRC26) in arterial myocytes. Methods and Results: Reverse transcription polymerase chain reaction and Western blotting detected LRRC26 mRNA and protein in cerebral artery myocytes. Biotinylation, immunofluorescence resonance energy transfer microscopy, and coimmunoprecipitation indicated that LRRC26 was located in close spatial proximity to, and associated with, plasma membrane BK&agr; subunits. LRRC26 knockdown (RNAi) reduced total and surface LRRC26, but did not alter BK&agr; or &bgr;1, proteins in arteries. LRRC26 knockdown did not alter Ca2+ sparks but reduced BK channel voltage sensitivity, which decreased channel apparent Ca2+ sensitivity and transient BK current frequency and amplitude in myocytes. LRRC26 knockdown also increased myogenic tone over a range (40–100 mm Hg) of intravascular pressures, and reduced vasoconstriction to iberiotoxin and vasodilation to NS1619, BK channel inhibitors and activators, respectively. In contrast, LRRC26 knockdown did not alter depolarization (60 mmol/L K+)–induced vasoconstriction. Conclusions: LRRC26 is expressed, associates with BK&agr; subunits, and elevates channel voltage- and apparent Ca2+ sensitivity in arterial myocytes to induce vasodilation. This study indicates that arterial myocytes express a functional BK channel &ggr; subunit.


Hypertension | 2012

An Elevation in Physical Coupling of Type 1 Inositol 1,4,5-Trisphosphate (IP3) Receptors to Transient Receptor Potential 3 (TRPC3) Channels Constricts Mesenteric Arteries in Genetic Hypertension

Adebowale Adebiyi; Candice M. Thomas-Gatewood; M. Dennis Leo; Michael W. Kidd; Zachary P. Neeb; Jonathan H. Jaggar

Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C–coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP3) that activates sarcoplasmic reticulum IP3 receptors. In cerebral artery myocytes, IP3 receptors release sarcoplasmic reticulum Ca2+ and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP3 receptors control vascular contractility in systemic arteries and IP3R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ≈2.7- and 2-fold higher in mesenteric arteries of spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP3R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-SHRs and WKY rats. Control, IP3-induced and endothelin-1 (ET-1)-induced fluorescence resonance energy transfer between IP3R1 and TRPC3 was higher in SHR than WKY myocytes. IP3-induced cation current was ≈3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and calmodulin and IP3 receptor binding domain peptide, an IP3R-TRP physical coupling inhibitor, reduced IP3-induced cation current and ET-1–induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a sarcoplasmic reticulum Ca2+-ATPase blocker, did not alter ET-1–stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP3R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP3R1 to TRPC3 channel molecular coupling augments ET-1–induced vasoconstriction during hypertension.Hypertension is associated with an elevation in agonist-induced vasoconstriction, but mechanisms involved require further investigation. Many vasoconstrictors bind to phospholipase C-coupled receptors, leading to an elevation in inositol 1,4,5-trisphosphate (IP3) that activates sarcoplasmic reticulum (SR) IP3 receptors (IP3Rs). In cerebral artery myocytes, IP3Rs release SR Ca2+ and can physically couple to canonical transient receptor potential 3 (TRPC3) channels in a caveolin-1-containing macromolecular complex, leading to cation current (ICat) activation that stimulates vasoconstriction. Here, we investigated mechanisms by which IP3Rs control vascular contractility in systemic arteries and IP3R involvement in elevated agonist-induced vasoconstriction during hypertension. Total and plasma membrane-localized TRPC3 protein was ~2.7- and 2-fold higher in mesenteric arteries of hypertensive spontaneously hypertensive rats (SHR) than in Wistar-Kyoto (WKY) rat controls, respectively. In contrast, IP3R1, TRPC1, TRPC6, and caveolin-1 expression was similar. TRPC3 expression was also similar in arteries of pre-hypertensive SHR and WKY rats. Control, IP3- and endothelin-1 (ET-1)-induced FRET between IP3R1 and TRPC3 was higher in hypertensive SHR than WKY myocytes. IP3-induced ICat was ~3-fold larger in SHR myocytes. Pyr3, a selective TRPC3 channel blocker, and CIRBP-TAT, an IP3R-TRP physical coupling inhibitor, reduced IP3-induced ICat and ET-1-induced vasoconstriction more in SHR than WKY myocytes and arteries. Thapsigargin, a SR Ca2+-ATPase blocker, did not alter ET-1-stimulated vasoconstriction in SHR or WKY arteries. These data indicate that ET-1 stimulates physical coupling of IP3R1 to TRPC3 channels in mesenteric artery myocytes, leading to vasoconstriction. Furthermore, an elevation in IP3R1 to TRPC3 channel molecular coupling augments ET-1-induced vasoconstriction during hypertension.


American Journal of Physiology-cell Physiology | 2015

Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction.

M. Dennis Leo; Simon Bulley; John P. Bannister; Korah P. Kuruvilla; Damodaran Narayanan; Jonathan H. Jaggar

Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated K(+) (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction.

Collaboration


Dive into the M. Dennis Leo's collaboration.

Top Co-Authors

Avatar

Jonathan H. Jaggar

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

John P. Bannister

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Simon Bulley

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Adebowale Adebiyi

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Damodaran Narayanan

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Frederick A. Boop

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Michael W. Kidd

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Candice M. Thomas-Gatewood

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Korah P. Kuruvilla

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge