M. Di Francesco
University of L'Aquila
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Di Francesco.
Archive for Rational Mechanics and Analysis | 2015
M. Di Francesco; Massimiliano Daniele Rosini
We prove that the unique entropy solution to a scalar nonlinear conservation law with strictly monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation law. More precisely, we prove that the empirical measure (respectively the discretised density) obtained from the follow-the-leader system converges in the 1–Wasserstein topology (respectively in
Proceedings of the American Mathematical Society | 2007
José A. Carrillo; M. Di Francesco; Giuseppe Toscani
Bollettino Della Unione Matematica Italiana | 2017
M. Di Francesco; Simone Fagioli; Massimiliano Daniele Rosini
{\mathbf{L^{1}_{loc}}}
arXiv: Numerical Analysis | 2017
M. Di Francesco; Simone Fagioli; Massimiliano Daniele Rosini; Giovanni Russo
Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze | 2016
José A. Carrillo; M. Di Francesco; Giuseppe Toscani
Lloc1) to the unique Kružkov entropy solution of the conservation law. The initial data are taken in
Nonlinear Analysis-theory Methods & Applications | 2012
José A. Carrillo; M. Di Francesco; Thomas Laurent; Dejan Slepčev
Kinetic and Related Models | 2016
M. Di Francesco; Simone Fagioli; Massimiliano Daniele Rosini; Giovanni Russo
{\mathbf{L}^\infty}
Nonlinear Analysis-theory Methods & Applications | 2018
M. Di Francesco; A. Esposito; Simone Fagioli
CASA-report | 2013
Ga Giovanni Bonaschi; José A. Carrillo; M. Di Francesco; Peletier
L∞, nonnegative, and with compact support, hence we are able to handle densities with a vacuum. Our result holds for a reasonably general class of velocity maps (including all the relevant examples in the applications, for example in the Lighthill-Whitham-Richards model for traffic flow) with a possible degenerate slope near the vacuum state. The proof of the result is based on discrete
Bollettino dell unione matematica italiana. Sezione B: articoli di ricerca matematica | 2007
José A. Carrillo; M. Di Francesco; Corrado Lattanzio