Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Diana Neely is active.

Publication


Featured researches published by M. Diana Neely.


Biomicrofluidics | 2015

Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.

Jacquelyn A. Brown; Virginia Pensabene; Dmitry A. Markov; Vanessa Allwardt; M. Diana Neely; Mingjian Shi; Clayton M. Britt; Orlando S. Hoilett; Qing Yang; Bryson M. Brewer; Philip C. Samson; Lisa J. McCawley; James M. May; Donna J. Webb; Deyu Li; Aaron B. Bowman; Ronald S. Reiserer; John P. Wikswo

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.


Cerebral Cortex | 2010

Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

Bonnie G. Garcia; M. Diana Neely; Ariel Y. Deutch

Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion-induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinsons disease.


ACS Chemical Neuroscience | 2012

DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction.

M. Diana Neely; Michael J. Litt; Andrew M. Tidball; Gary G. Li; Asad A. Aboud; Corey R. Hopkins; Reed Chamberlin; Charles C. Hong; Kevin C. Ess; Aaron B. Bowman

Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist, Noggin, and the small molecule SB431542, respectively, induces efficient neuralization of hiPSCs, a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost, consistent activity, and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1, a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration, we could selectively modulate the number of SOX1 expressing cells, whereas PAX6, another neural precursor marker, remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations, therefore, suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons, a subset of which also express tyrosine hydroxylase. Thus, the combined use of DMH1, a highly specific BMP-pathway inhibitor, and SB431542, a TGF-β1-pathway specific inhibitor, provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.


Neurotoxicology | 2012

Genetic risk for Parkinson's disease correlates with alterations in neuronal manganese sensitivity between two human subjects.

Asad A. Aboud; Andrew M. Tidball; Kevin K. Kumar; M. Diana Neely; Kevin C. Ess; Keith M. Erikson; Aaron B. Bowman

Manganese (Mn) is an environmental risk factor for Parkinsons disease (PD). Recessive inheritance of PARK2 mutations is strongly associated with early onset PD (EOPD). It is widely assumed that the influence of PD environmental risk factors may be enhanced by the presence of PD genetic risk factors in the genetic background of individuals. However, such interactions may be difficult to predict owing to the complexities of genetic and environmental interactions. Here we examine the potential of human induced pluripotent stem (iPS) cell-derived early neural progenitor cells (NPCs) to model differences in Mn neurotoxicity between a control subject (CA) with no known PD genetic risk factors and a subject (SM) with biallelic loss-of-function mutations in PARK2 and family history of PD but no evidence of PD by neurological exam. Human iPS cells were generated from primary dermal fibroblasts of both subjects. We assessed several outcome measures associated with Mn toxicity and PD. No difference in sensitivity to Mn cytotoxicity or mitochondrial fragmentation was observed between SM and CA NPCs. However, we found that Mn exposure was associated with significantly higher reactive oxygen species (ROS) generation in SM compared to CA NPCs despite significantly less intracellular Mn accumulation. Thus, this report offers the first example of human subject-specific differences in PD-relevant environmental health related phenotypes that are consistent with pathogenic interactions between known genetic and environmental risk factors for PD.


European Journal of Neuroscience | 2009

Cortical serotonin and norepinephrine denervation in parkinsonism: Preferential loss of the beaded serotonin innervation

Tultul Nayyar; Michael Bubser; Marcus C. Ferguson; M. Diana Neely; J. Shawn Goodwin; Thomas J. Montine; Ariel Y. Deutch; Twum A. Ansah

Parkinson’s Disease (PD) is marked by prominent motor symptoms that reflect striatal dopamine insufficiency. However, non‐motor symptoms, including depression, are common in PD. It has been suggested that these changes reflect pathological involvement of non‐dopaminergic systems. We examined regional changes in serotonin (5‐HT) and norepinephrine (NE) systems in mice treated with two different 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) treatment paradigms, at survival times of 3 or 16 weeks after the last MPTP injection. MPTP caused a decrease in striatal dopamine concentration, the magnitude of which depended on the treatment regimen and survival interval after MPTP treatment. There was significant involvement of other subcortical areas receiving a dopamine innervation, but no consistent changes in 5‐HT or NE levels in subcortical sites. In contrast, we observed an enduring decrease in 5‐HT and NE concentrations in both the somatosensory cortex and medial prefrontal cortex (PFC). Immunohistochemical studies also revealed a decrease in the density of PFC NE and 5‐HT axons. The decrease in the cortical serotonergic innervation preferentially involved the thick beaded but not smooth fine 5‐HT axons. Similar changes in the 5‐HT innervation of post‐mortem samples of the PFC from idiopathic PD cases were seen. Our findings point to a major loss of the 5‐HT and NE innervations of the cortex in MPTP‐induced parkinsonism, and suggest that loss of the beaded cortical 5‐HT innervation is associated with a predisposition to the development of depression in PD.


Free Radical Biology and Medicine | 2000

Congeners of Nα-acetyl-L-cysteine but not aminoguanidine act as neuroprotectants from the lipid peroxidation product 4-hydroxy-2-nonenal

M. Diana Neely; Lisa J. Zimmerman; Matthew J. Picklo; Joyce J. Ou; Catha R Morales; Kathleen S. Montine; Venkataraman Amaranth; Thomas J. Montine

Increased generation of neurotoxic lipid peroxidation products is proposed to contribute to the pathogenesis of Alzheimers disease (AD). Current antioxidant therapies are directed at limiting propagation of brain lipid peroxidation. Another approach would be to scavenge the reactive aldehyde products of lipid peroxidation. N(alpha)-acetyl-L-cysteine (NAC) and aminoguanidine (AG) react rapidly and irreversibly with 4-hydroxy-2-nonenal (HNE) in vitro, and both have been proposed as potential scavengers of HNE in biological systems. We have compared NAC, AG, and a series of congeners as scavengers of HNE and as neuroprotectants from HNE. Our results showed that while both NAC and AG had comparable chemical reactivity with HNE, only NAC and its congeners were able to block HNE-protein adduct formation in vitro and in neuronal cultures. Moreover, NAC and its congeners, but not AG, effectively protected brain mitochondrial respiration and neuronal microtubule structure from the toxic effects of HNE. We conclude that NAC and its congeners, but not AG, may act as neuroprotectants from HNE.


Journal of Neuroinflammation | 2016

Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit

Jacquelyn A. Brown; Simona G. Codreanu; Mingjian Shi; Stacy D. Sherrod; Dmitry A. Markov; M. Diana Neely; Clayton M. Britt; Orlando S. Hoilett; Ronald S. Reiserer; Philip C. Samson; Lisa J. McCawley; Donna J. Webb; Aaron B. Bowman; John A. McLean; John P. Wikswo

BackgroundUnderstanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches—whether in vivo or in vitro—have often been only snapshots of this complex web of interactions.MethodsWe utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1β, TNF-α, and MCP1,2.ResultsIn this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response.ConclusionsTaken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure.


Brain Research | 2007

Systemic Administration of a Proteasome Inhibitor Does Not Cause Nigrostriatal Dopamine Degeneration

Brian N. Mathur; M. Diana Neely; Melanie Dyllick-Brenzinger; Anurag Tandon; Ariel Y. Deutch

Proteasomal dysfunction has been suggested to contribute to the degeneration of nigrostriatal dopamine neurons in Parkinsons disease. A recent study reported that systemic treatment of rats with the proteasome inhibitor Z-lle-Glu(OtBu)-Ala-Leu-al (PSI) causes a slowly progressive degeneration of nigrostriatal dopamine neurons, the presence of inclusion bodies in dopamine neurons, and motor impairment. We examined in vitro and in vivo the effects of PSI on nigrostriatal dopamine neurons. Mass spectrometric analysis was employed to verify the authenticity of the PSI compound. PSI was non-specifically toxic to neurons in ventral mesencephalic organotypic slice cultures, indicating that impairment of proteasome function in vitro is toxic. Moreover, systemic administration of PSI transiently decreased brain proteasome activity. Systemic treatment of rats with PSI did not, however, result in any biochemical or anatomical evidence of lesions of nigrostriatal dopamine neurons, nor were any changes in locomotor activity observed. These data suggest that systemic administration of proteasome inhibitors to normal adult rats does not reliably cause an animal model of parkinsonism.


Human Molecular Genetics | 2015

A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease

Andrew M. Tidball; Miles R. Bryan; Michael A. Uhouse; Kevin K. Kumar; Asad A. Aboud; Jack E. Feist; Kevin C. Ess; M. Diana Neely; Michael Aschner; Aaron B. Bowman

The essential micronutrient manganese is enriched in brain, especially in the basal ganglia. We sought to identify neuronal signaling pathways responsive to neurologically relevant manganese levels, as previous data suggested that alterations in striatal manganese handling occur in Huntingtons disease (HD) models. We found that p53 phosphorylation at serine 15 is the most responsive cell signaling event to manganese exposure (of 18 tested) in human neuroprogenitors and a mouse striatal cell line. Manganese-dependent activation of p53 was severely diminished in HD cells. Inhibitors of ataxia telangiectasia mutated (ATM) kinase decreased manganese-dependent phosphorylation of p53. Likewise, analysis of ATM autophosphorylation and additional ATM kinase targets, H2AX and CHK2, support a role for ATM in the activation of p53 by manganese and that a defect in this process occurs in HD. Furthermore, the deficit in Mn-dependent activation of ATM kinase in HD neuroprogenitors was highly selective, as DNA damage and oxidative injury, canonical activators of ATM, did not show similar deficits. We assessed cellular manganese handling to test for correlations with the ATM-p53 pathway, and we observed reduced Mn accumulation in HD human neuroprogenitors and HD mouse striatal cells at manganese exposures associated with altered p53 activation. To determine if this phenotype contributes to the deficit in manganese-dependent ATM activation, we used pharmacological manipulation to equalize manganese levels between HD and control mouse striatal cells and rescued the ATM-p53 signaling deficit. Collectively, our data demonstrate selective alterations in manganese biology in cellular models of HD manifest in ATM-p53 signaling.


Neurobiology of Disease | 2015

PARK2 patient neuroprogenitors show increased mitochondrial sensitivity to copper

Asad A. Aboud; Andrew M. Tidball; Kevin K. Kumar; M. Diana Neely; Bingying Han; Kevin C. Ess; Charles C. Hong; Keith M. Erikson; Peter Hedera; Aaron B. Bowman

Poorly-defined interactions between environmental and genetic risk factors underlie Parkinsons disease (PD) etiology. Here we tested the hypothesis that human stem cell derived forebrain neuroprogenitors from patients with known familial risk for early onset PD will exhibit enhanced sensitivity to PD environmental risk factors compared to healthy control subjects without a family history of PD. Two male siblings (SM and PM) with biallelic loss-of-function mutations in PARK2 were identified. Human induced pluripotent stem cells (hiPSCs) from SM, PM, and four control subjects with no known family histories of PD or related neurodegenerative diseases were utilized. We tested the hypothesis that hiPSC-derived neuroprogenitors from patients with PARK2 mutations would show heightened cell death, mitochondrial dysfunction, and reactive oxygen species generation compared to control cells as a result of exposure to heavy metals (PD environmental risk factors). We report that PARK2 mutant neuroprogenitors showed increased cytotoxicity with copper (Cu) and cadmium (Cd) exposure but not manganese (Mn) or methyl mercury (MeHg) relative to control neuroprogenitors. PARK2 mutant neuroprogenitors also showed a substantial increase in mitochondrial fragmentation, initial ROS generation, and loss of mitochondrial membrane potential following Cu exposure. Our data substantiate Cu exposure as an environmental risk factor for PD. Furthermore, we report a shift in the lowest observable effect level (LOEL) for greater sensitivity to Cu-dependent mitochondrial dysfunction in patients SM and PM relative to controls, correlating with their increased genetic risk for PD.

Collaboration


Dive into the M. Diana Neely's collaboration.

Top Co-Authors

Avatar

Aaron B. Bowman

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Tidball

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Asad A. Aboud

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Y. Deutch

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Aschner

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miles R. Bryan

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge