M Doble
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M Doble.
Eos, Transactions American Geophysical Union | 2008
Jean-Claude Gascard; Jean Festy; Hervé le Goff; Matthieu Weber; Burghard Bruemmer; Michael Offermann; M Doble; Peter Wadhams; René Forsberg; Susan Hanson; Henriette Skourup; Sebastian Gerland; Marcel Nicolaus; Jean-Philippe Metaxian; Jacques Grangeon; Jari Haapala; Eero Rinne; Christian Haas; Alfred Wegener; Georg Heygster; Erko Jakobson; Timo Palo; Jeremy Wilkinson; Lars Kaleschke; Kerry Claffey; Bruce Elder; J. W. Bottenheim
The Arctic is undergoing significant environmental changes due to climate warming. The most evident signal of this warming is the shrinking and thinning of the ice cover of the Arctic Ocean. If the warming continues, as global climate models predict, the Arctic Ocean will change from a perennially ice-covered to a seasonally ice-free ocean. Estimates as to when this will occur vary from the 2030s to the end of this century. One reason for this huge uncertainty is the lack of systematic observations describing the state, variability, and changes in the Arctic Ocean.
Annals of Glaciology | 2006
Christian Haas; Stefan Hendricks; M Doble
Abstract Results of helicopter-borne electromagnetic measurements of total (ice plus Snow) Sea-ice thickness performed in May 2004 and 2005 in the Lincoln Sea and adjacent Arctic Ocean up to 86˚N are presented. Thickness distributions South of 84˚N are dominated by multi-year ice with modal thicknesses of 3.9 m in 2004 and 4.2 m in 2005 (mean thicknesses 4.67 and 5.18 m, respectively). Modal and mean Snow thickness on multi-year ice amounted to 0.18 and 0.30 m in 2004, and 0.28 and 0.35 m in 2005. There are also considerable amounts of 0.9–2.2m thick first-year ice (modal thickness), mostly representing ice formed in the recurring, refrozen Lincoln Polynya. Results are in good agreement with ground-based electromagnetic thickness measurements and with ice types demarcated in Satellite Synthetic aperture radar imagery. Four drifting buoys deployed in 2004 between 86˚N and 84.5˚N Show a Similar pattern of a mean Southward drift of the ice pack of 83 ±18km between May 2004 and April 2005, towards the coast of Ellesmere Island and Nares Strait. The resulting area decrease of 26% between the buoys and the coast is larger than the observed thickness increase South of 84˚ N. This points to the importance of Shear in a narrow band along the coast, and of ice export through Nares Strait in removing ice from the Study region.
Journal of Geophysical Research | 2017
Polona Itkin; Gunnar Spreen; Bin Cheng; M Doble; Fanny Girard-Ardhuin; Jari Haapala; Nick Hughes; Lars Kaleschke; Marcel Nicolaus; Jeremy Wilkinson
Arctic sea ice has displayed significant thinning as well as an increase in drift speed in recent years. Taken together this suggests an associated rise in sea ice deformation rate. A winter and spring expedition to the sea ice covered region north of Svalbard–the Norwegian young sea ICE2015 expedition (N-ICE2015)—gave an opportunity to deploy extensive buoy arrays and to monitor the deformation of the first-year and second-year ice now common in the majority of the Arctic Basin. During the 5 month long expedition, the ice cover underwent several strong deformation events, including a powerful storm in early February that damaged the ice cover irreversibly. The values of total deformation measured during N-ICE2015 exceed previously measured values in the Arctic Basin at similar scales: At 100 km scale, N-ICE2015 values averaged above 0.1 d−1, compared to rates of 0.08 d−1 or less for previous buoy arrays. The exponent of the power law between the deformation length scale and total deformation developed over the season from 0.37 to 0.54 with an abrupt increase immediately after the early February storm, indicating a weakened ice cover with more free drift of the sea ice floes. Our results point to a general increase in deformation associated with the younger and thinner Arctic sea ice and to a potentially destructive role of winter storms.
Geophysical Research Letters | 2015
M Doble; Giacomo De Carolis; Michael H. Meylan; Jean-Raymond Bidlot; Peter Wadhams
Wave attenuation coefficients (α, m A1) were calculated from in situ data transmitted by custom wave buoys deployed into the advancing pancake ice region of the Weddell Sea. Data cover a 12 day period as the buoy array was first compressed and then dilated under the influence of a passing low-pressure system. Attenuation was found to vary over more than 2 orders of magnitude and to be far higher than that observed in broken-floe marginal ice zones. A clear linear relation between α and ice thickness was demonstrated, using ice thickness from a novel dynamic/thermodynamic model. A simple expression for α in terms of wave period and ice thickness was derived, for application in research and operational models. The variation of α was further investigated with a two-layer viscous model, and a linear relation was found between eddy viscosity in the sub-ice boundary layer and ice thickness.
Geophysical Research Letters | 2016
Fabrice Ardhuin; Peter Sutherland; M Doble; Peter Wadhams
The poorly understood attenuation of surface waves in sea ice is generally attributed to the combination of scattering and dissipation. Scattering and dissipation have very different effects on the directional and temporal distribution of wave energy, making it possible to better understand their relative importance by analysis of swell directional spreading and arrival times. Here we compare results of a spectral wave model – using adjustable scattering and dissipation attenuation formulations – with wave measurements far inside the ice pack. In this case, scattering plays a negligible role in the attenuation of long swells. Specifically, scattering-dominated attenuation would produce directional wave spectra much broader than the ones recorded, and swell events arriving later and lasting much longer than observed. Details of the dissipation process remain uncertain. Average dissipation rates are consistent with creep effects but are 12 times those expected for a laminar boundary layer under a smooth solid ice plate.
Journal of Geophysical Research | 2016
W. Erick Rogers; Jim Thomson; Hayley H. Shen; M Doble; Peter Wadhams; Sukun Cheng
A model for wind-generated surface gravity waves, WAVEWATCH IIIR , is used to analyze and interpret buoy measurements of wave spectra. The model is applied to a hindcast of a wave event in sea ice in the western Arctic, 11–14 October 2015, for which extensive buoy and ship-borne measurements were made during a research cruise. The model, which uses a viscoelastic parameterization to represent the impact of sea ice on the waves, is found to have good skill—after calibration of the effective viscosity—for prediction of total energy, but over-predicts dissipation of high frequency energy by the sea ice. This shortcoming motivates detailed analysis of the apparent dissipation rate. A new inversion method is applied to yield, for each buoy spectrum, the inferred dissipation rate as a function of wave frequency. For 102 of the measured wave spectra, visual observations of the sea ice were available from buoy-mounted cameras, and ice categories (primarily for varying forms of pancake and frazil ice) are assigned to each based on the photographs. When comparing the inversion-derived dissipation profiles against the independently derived ice categories, there is remarkable correspondence, with clear sorting of dissipation profiles into groups of similar ice type. These profiles are largely monotonic: they do not exhibit the ‘‘roll-over’’ that has been found at high frequencies in some previous observational studies.
Annals of Glaciology | 2006
M Doble; Duncan J L Mercer; David Meldrum; Oliver C Peppe
Abstract Traditional methods of measuring the propagation of waves originating from ocean swell and other sources have relied on wire strain gauges, accelerometers or tiltmeters. All methods required constant attention to keep in range, while data recovery has demanded that the instrument site be revisited. In this paper, we describe the use of ultra-sensitive tiltmeters and novel re-zeroing techniques to autonomously gather wave data from both polar regions. A key feature of our deployments has been the use of the Iridium satellite communications system as a way of ensuring continuous data recovery and remote control of the instrumentation. Currently four instruments have been successfully reporting from the Arctic Ocean for over 18 months, with two further units deployed in 2005, one in the Weddell Sea, Antarctica, and one additional unit in the Arctic.
ieee/oes autonomous underwater vehicles | 2008
M Doble; Peter Wadhams; Alexander L. Forrest; Bernard Laval
We present operational experiences from two deployments of a small Gavia AUV in the high Arctic. Deployments took place from the U.S.-led APLIS camp, in the Beaufort Sea during May 2007 and from a small independent ice camp, on the fast ice just north of Canadas Ellesmere Island, in May 2008. Both deployments took place through a 3 times 1 m access hole in first-year (FY) sea ice made with hot water drilling equipment. A heated tent was placed over the hole and repeated runs made to characterise the sea ice in the area. The second deployment demonstrated the minimum logistics required to run a small AUV in this manner, only requiring a working tent, one sleeping tent and two or three people. It was staged from shore using skidoos. Study areas included all typical types and ages of ice - level and ridged FY ice, rubble fields (FY and multi-year (MY)), and MY floes and ridges. Both deployments were coordinated with simultaneous overflights by aircraft- and helicopter-borne instruments, allowing co-registration of snow+ice freeboard (from a scanning laser profilometer) and ice+snow thickness, from an electromagnetic induction device (HEM), operated by the University of Alberta. In situ measurements of ice thickness (grids and transects of drilled holes) validated results from all instruments.
Eos, Transactions American Geophysical Union | 2008
Jennifer K. Hutchings; Cathleen A. Geiger; Andrew P. Roberts; Jacqueline A. Richter-Menge; M Doble; René Forsberg; Katharine Giles; Christian Haas; Stefan Hendricks; Chandra Khambhamettu; Seymour W. Laxon; Torge Martin; Matthew J. Pruis; Mani Thomas; Peter Wadhams; H. Jay Zwally
Over the past decade, the Arctic Ocean and Beaufort Sea ice pack has been less extensive and thinner than has been observed during the previous 35 years [e.g., Wadhams and Davis, 2000; Tucker et al., 2001; Rothrock et al., 1999; Parkinson and Cavalieri, 2002; Comiso, 2002]. During the summers of 2007 and 2008, the ice extents for both the Beaufort Sea and the Northern Hemisphere were the lowest on record. Mechanisms causing recent sea ice change in the Pacific Arctic and the Beaufort Sea are under investigation on many fronts [e.g., Drobot and Maslanik, 2003; Shimada et al., 2006]; the mechanisms include increased ocean surface warming due to Pacific Ocean water inflow to the region and variability in meteorological and surface conditions. However, in most studies addressing these events, the impact of sea ice dynamics, specifically deformation, has not been measured in detail.
Journal of Geophysical Research | 2018
Michael H. Meylan; Luke G. Bennetts; J. E. M. Mosig; W. E. Rogers; M Doble; Malte A. Peter
Analysis of field measurements of ocean surface wave activity in the marginal ice zone, from campaigns in the Arctic and Antarctic and over a range of different ice conditions, shows the wave attenuation rate with respect to distance has a power law dependence on the frequency with order between two and four. With this backdrop, the attenuation-frequency power law dependencies given by three dispersion relation models are obtained under the assumptions of weak attenuation, negligible deviation of the wave number from the open water wave number, and thin ice. It is found that two of the models (both implemented in WAVEWATCH IIIR ), predict attenuation rates that are far more sensitive to frequency than indicated by the measurements. An alternative method is proposed to derive dispersion relation models, based on energy loss mechanisms. The method is used to generate example models that predict power law dependencies that are comparable with the field measurements.