Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Doro is active.

Publication


Featured researches published by M. Doro.


Proceedings of SPIE | 2008

Glass mirrors by cold slumping to cover 100 m2 of the MAGIC II Cherenkov telescope reflecting surface

Giovanni Pareschi; E. Giro; Robert Banham; S. Basso; D. Bastieri; R. Canestrari; G. Ceppatelli; Oberto Citterio; M. Doro; Mauro Ghigo; F. Marioni; M. Mariotti; M. Salvati; F. Sanvito; Dervis Vernani

We report on the production and implementation of 100 square panels 1 m x 1 m, based on the innovative approach of cold slumping of thin glass sheets. The more than 100 segments will cover around one half of the 240 m-square reflecting surface of the MAGIC II, a clone of the atmospheric Cherenkov telescope MAGIC I (with a single-dish 17 m diameter mirror) which is already operating since late 2003 at La Palma. The MAGIC II telescope will be completed by the end of 2008 and will operate in stereoscopic mode with MAGIC I. While the central part of the of the reflector is composed of by diamond milled Aluminum of 1m2 area panels (following a design similar to that already used for MAGIC I), the outer coronas will be made of sandwiched glass segments. The glass panel production foresees the following steps: a) a thin glass sheet (1-2mm) is elastically deformed so as to retain the shape imparted by a master with convex profile - the radius of curvature is large, the sheet can be pressed against the master using vacuum suction -; b) on the deformed glass sheet a honeycomb structure that provides the needed rigidity is glued ; c) then a second glass sheet is glued on the top in order to obtain a sandwich; d) after on the concave side a reflecting coating (Aluminum) and a thin protective coating (Quartz) are deposited. The typical weight of each panel is about 12 kg and its resolution is better than 1 mrad at a level of diameter that contains the 90% of the energy reflected by the mirror; the areal cost of glass panels is ~2 k per 1m2. The technology based on cold slumping is a good candidate for the production of the primary mirrors of the telescopes forming the Cherenkov Telescope Array (CTA), the future large TeV observatory currently being studied in Europe. Details on the realization of MAGIC II new mirrors based on cold slumping glass will be presented.


Proceedings of SPIE | 2008

Development of cold-slumping glass mirrors for imaging Cherenkov telescopes

Dervis Vernani; Robert Banham; Oberto Citterio; F. Sanvito; Giuseppe Valsecchi; Giovanni Pareschi; Mauro Ghigo; E. Giro; M. Doro; M. Mariotti

The development of lightweight glass mirrors manufactured via cold-slumping technique for Imaging Atmospheric Cherenkov Telescope is presented. The mirror elements have a sandwich-like structure where the reflecting and backing facets are composed by glass sheets with an interposed honeycomb aluminum core. The reflecting coating is deposited in high vacuum by means of physical vapor deposition and consists of aluminum with an additional protective layer of SiO2. The mirror fabrication and environmental qualification by accelerated ageing, thermal cycling and coating adhesion are presented together with the optical performances measured as angular resolution and reflectivity obtained on spherical, 1 squared meter mirror prototypes.


Proceedings of SPIE | 2013

Status of the technologies for the production of the Cherenkov telescope array (CTA) mirrors

Giovanni Pareschi; T. Armstrong; H. Baba; J. Bähr; A. Bonardi; G. Bonnoli; P. Brun; R. Canestrari; P. M. Chadwick; M. Chikawa; P. H. Carton; V. de Souza; J. Dipold; M. Doro; D. Durand; M. Dyrda; A. Förster; M. Garczarczyk; E. Giro; J. F. Glicenstein; Y. Hanabata; M. Hayashida; M. Hrabovski; C. Jeanney; M. Kagaya; Hideaki Katagiri; L. Lessio; D. Mandat; M. Mariotti; C. Medina

The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.


Proceedings of SPIE | 2009

Techniques for the manufacturing of stiff and lightweight optical mirror panels based on slumping of glass sheets: concepts and results

R. Canestrari; Mauro Ghigo; Giovanni Pareschi; S. Basso; G. Motta; M. Doro; E. Giro; L. Lessio

In the last decade Very High Energy (VHE) gamma-ray astronomy has improved rapidly opening a new window for ground-based astronomy with surprising implications in the theoretical models. Nowadays, it is possible to make imaging, photometry and spectroscopy of sources with good sensitivity and angular resolution using new facilities as MAGIC, HESS and VERITAS. The latest results of astronomy in the TeV band obtained using such facilities demonstrate the essential role of this window for high energy astrophysics. For this reason new projects (e.g. CTA and AGIS) have been started with the aim to increase the sensitivity and expand the energy band coverage. For such telescopes arrays probably tens of thousands of optical mirror panels must be manufactured with an adequate industrial process, then tested and mounted into the telescopes. Because of the high number of mirrors it is mandatory to perform feasibility studies to test various techniques to meet the technical and cost-effectiveness requirements for the next generation TeV telescopes as CTA and AGIS. In this context at the Astronomical Observatory of Brera (INAF-OAB) we have started the investigation of different techniques for the manufacturing of stiff and lightweight optical glass mirror panels. These panels show a sandwich-like structure with two thin glass skins on both sides, the reflective one being optically shaped using an ad-hoc slumping procedure. The technologies here presented can be addressed both for primary or secondary mirrors for the next generation of Cherenkov telescopes. In this paper we present and discuss the different techniques we are investigating with some preliminary results obtained from test panels realized.


6th Roma International Conference on Astroparticle Physics, RICAP 2016 | 2017

LATTES: a new gamma-ray detector concept for South America

P. Assis; U. Barres de Almeida; A. Blanco; R. Conceição; B. D’Ettoree Piazzoli; A. De Angelis; M. Doro; P. Fonte; Luis Lopes; G. Matthiae; M. Pimenta; R. Shellard; B. Tomé

Currently the detection of Very High Energy gamma-rays for astrophysics rely on the measurement of the Extensive Air Showers (EAS) either using Cherenkov detectors or EAS arrays with larger field of views but also larger energy thresholds. In this talk we present a novel hybrid detector concept for a EAS array with an improved sensitivity in the lower energies (


Proceedings of SPIE | 2018

The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s

V. Tatischeff; J. Isern; Claudio Labanti; Andreas Zoglauer; J.E. Grove; X. Wu; S. Funk; M. Branchesi; A. Vacchi; J.E. McEnery; R. Turolla; M. N. Mazziotta; G. Minervini; J. Peyré; Irfan Kuvvetli; M. Leising; O. Limousin; A. Argan; R. M. Curado da Silva; M. Cardillo; J. M. Paredes; Andrzej A. Zdziarski; R. Campana; A. Bykov; M. Ajello; M. Doro; Paolo S. Coppi; U. Oberlack; A. Morselli; R. Diehl

sim 100,


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018

Design of a SiPM-based cluster for the Large-Sized Telescope camera of the Cherenkov Telescope Array

M. Mallamaci; B. Baibussinov; G. Busetto; D. Corti; A. De Angelis; F. Di Pierro; M. Doro; L. Lessio; M. Mariotti; R. Rando; E. Prandini; P. Vallania; C. Vigorito

GeV). We discuss its main features, capabilities and present preliminary results on its expected perfomances and sensitivities.This wide field of view experiment is planned to be installed at high altitude in South America making it a complementary project to the planned Cherenkov telescope experiments and a powerful tool to trigger further observations of variable sources and to detect transients phenomena.


arXiv: Instrumentation and Methods for Astrophysics | 2016

First results of the two square meters multilayer glass composite mirror design proposed for the Cherenkov Telescope Array developed at INFN

C. Schultz; M. Doro; L. Lessio; M. Mariotti; R. Rando

e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a γ-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV–GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.


SPIE | 2013

Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors

Giovanni Pareschi; T. Armstrong; H. Baba; J. Bähr; A. Bonardi; G. Bonnoli; P. Brun; R. Canestrari; P. M. Chadwick; M. Chikawa; P. H. Carton; V. de Souza; J. Dipold; M. Doro; D. Durand; M. Dyrda; A. Förster; M. Garczarczyk; E. Giro; J. F. Glicenstein; Y. Hanabata; M. Hayashida; M. Hrabovski; C. Jeanney; M. Kagaya; H. Katagiri; Luigi Lessio; D. Mandat; M. Mariotti; C. Medina

Abstract A Silicon Photomultiplier (SiPM)-based photodetector is being built to demonstrate its feasibility for an alternative silicon-based camera design for the Large-Sized Telescope (LST) of the Cherenkov Telescope Array. It has been designed to match the size of the standard Photomultiplier Tube (PMT) cluster unit and to be compatible with mechanics, electronics and focal plane optics of the first LST camera. Here, we describe the overall SiPM cluster design along with the main differences with respect to the currently used PMT cluster unit. The fast electronics of the SiPM pixel and its layout are also presented. In order to derive the best working condition for the final unit, we measured the SiPM performances in terms of gain, photo-detection efficiency and cross-talk. One pixel, a unit of 14 SiPMs, has been built. We will discuss also some preliminary results regarding this device and we will highlight the future steps of this project.


arXiv: High Energy Astrophysical Phenomena | 2011

The search for galactic dark matter clump candidates with Fermi and MAGIC

D. Nieto; S. Pardo; J. Rico; J. L. Contreras; M. Doro; Nestor Rafael Mirabal; A. Moralejo; S. Lombardi; J. Aleksić; J. A. Barrio; F. Zandanel

The Cherenkov Telescope Array (CTA) is a future ground-based gamma-ray astronomy detector that will consist of more than 100 Imaging Atmospheric Cherenkov Telescopes of different sizes. The total reflective surface of roughly 10 000 m

Collaboration


Dive into the M. Doro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Font

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge