M. Dowdall
Norwegian Radiation Protection Authority
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Dowdall.
Journal of Environmental Radioactivity | 2013
Thomas G. Hinton; Jacqueline Garnier-Laplace; Hildegarde Vandenhove; M. Dowdall; Christelle Adam-Guillermin; Frédéric Alonzo; C.L. Barnett; K. Beaugelin-Seiller; N.A. Beresford; Clare Bradshaw; J. Brown; Frédérique Eyrolle; Laureline Février; J.-C. Gariel; Rodolphe Gilbin; Turid Hertel-Aas; Nele Horemans; B.J. Howard; Tarja K. Ikäheimonen; Juan Carlos Mora; Deborah Oughton; A. Real; Brit Salbu; M. Simon-Cornu; M. Steiner; L. Sweeck; J. Vives i Batlle
With intentions of integrating a portion of their respective research efforts into a trans-national programme that will enhance radioecology, eight European organisations recently formed the European Radioecology ALLIANCE (www.er-alliance.org). The ALLIANCE is an Association open to other organisations throughout the world with similar interests in promoting radioecology. The ALLIANCE members recognised that their shared radioecological research could be enhanced by efficiently pooling resources among its partner organizations and prioritising group efforts along common themes of mutual interest. A major step in this prioritisation process was to develop a Strategic Research Agenda (SRA). An EC-funded Network of Excellence in Radioecology, called STAR (Strategy for Allied Radioecology), was formed, in part, to develop the SRA. This document is the first published draft of the SRA. The SRA outlines a suggested prioritisation of research topics in radioecology, with the goal of improving research efficiency and more rapidly advancing the science. It responds to the question: What topics, if critically addressed over the next 20 years, would significantly advance radioecology? The three Scientific Challenges presented within the SRA, with their 15 associated research lines, are a strategic vision of what radioecology can achieve in the future. Meeting these challenges will require a directed effort and collaboration with many organisations the world over. Addressing these challenges is important to the advancement of radioecology and in providing scientific knowledge to decision makers. Although the development of the draft SRA has largely been a European effort, the hope is that it will initiate an open dialogue within the international radioecology community and its stakeholders. This is an abbreviated document with the intention of introducing the SRA and inviting contributions from interested stakeholders. Critique and input for improving the SRA are welcomed via a link on the STAR website (www.star-radioecology.org).
Journal of Environmental Radioactivity | 2008
O. Reistad; M. Dowdall; W.J.F. Standring; Ø.G. Selnæs; S. Hustveit; F. Steinhusen; A. Sørlie
The spent nuclear fuel (SNF) and radioactive waste (RAW) storage facility at Andreeva Bay shore technical base (STB) is one of the largest and most hazardous nuclear legacy sites in northwest Russia. Originally commissioned in the 1960s the facility now stores large amounts of SNF and RAW associated with the Russian Northern Fleet of nuclear powered submarines. The objective of the present study was to map ambient gamma dose rates throughout the facility, in particular at a number of specific sites where SNF and RAW are stored. The data presented here are taken from a Norwegian-Russian collaboration enabling the first publication in the scientific literature of the complete survey of on-site dose rates. Results indicate that elevated gamma dose rates are found primarily at discrete sites within the facility; maximum dose rates of up to 1000 microSv/h close to the ground (0.1m) and up to 3000 microSv/h at 1m above ground were recorded, higher doses at the 1m height being indicative primarily of the presence of contaminated equipment as opposed to ground contamination. Highest dose rates were measured at sites located in the immediate vicinity of buildings used for storing SNF and sites associated with storage of solid and liquid radioactive wastes. Elevated dose rates were also observed near the former channel of a small brook that became heavily contaminated as a result of radioactive leaks from the SNF storage at Building 5 starting in 1982. Isolated patches of elevated dose rates were also observed throughout the STB. A second paper detailing the radioactive soil contamination at the site is published in this issue of Journal of Environmental Radioactivity.
Marine Pollution Bulletin | 2009
W.J.F. Standring; M. Dowdall; Ingar Amundsen; P. Strand
Recent media reports as to the development, construction and possible deployment of floating nuclear power plants in the northern regions has generated significant interest in the matter. This paper presents background to the concept of floating nuclear power plants, information as to possible designs and iterations and some aspects of potential concern with respect to safety and the potential for environmental or other impacts as a result of the development and use of such systems in the northern regions.
Journal of Environmental Radioactivity | 2009
W.J.F. Standring; J.E. Brown; M. Dowdall; E.M. Korobova; V.G. Linnik; A.G. Volosov
The Mining and Chemical Industrial Combine, Zheleznogorsk (MCIC, previously known as Krasnoyarsk-26) on the River Yenisey has contaminated the surrounding environment with anthropogenic radionuclides as a result of discharges of radioactive wastes. The purpose of this study was to investigate the vertical distribution of anthropogenic contamination ((137)Cs and plutonium) within floodplain areas at different distances from the discharge point. Sites were chosen that display different characteristics with respect to periodic inundation with river water. Cs-137 activity concentrations were in the range 23-3770 Bq/kg (dry weight, d.w.); Pu-239,240 activity concentrations were in the range <0.01-14.2 Bq/kg (d.w.). Numerous sample cores exhibited sub-surface maxima which may be related to the historical discharges from the MCIC. Possible evidence indicating the deposition of earlier discharges at MCIC in deeper core layers was observed in the (238)Pu:(239,240)Pu activity ratio data: a Pu signal discernible from global fallout could be observed in numerous samples. Cs-137 and Pu-239,240 activity concentrations were correlated with the silt fraction (% by mass <63 microm) though no significant correlation was observed between (grain-size) normalised (137)Cs activity concentrations and distance downstream from the MCIC.
Marine Pollution Bulletin | 2012
M. Dowdall; Aivo Lepland
Oil and gas extraction activities discharge waters bearing radium isotopes which may potentially be transported to locations distant from the discharge point. Sediment cores from the Norwegian Trench and Skagerrak, potential sinks for North Sea discharges, were analyzed for the contents of these isotopes. All cores were such that data could be obtained from periods prior to and during extensive operations in the North Sea. Results indicate elevated levels of radium isotopes in upper sedimentary layers when compared to data for the Baltic Sea and Kattegat. Although diagenetic processes involving manganese cycling may be responsible for these enrichments, the data support previous work indicating a possible influence of North Sea discharges on sediments of the area. The results highlight the need for further work on elaborating background levels of these isotopes in the North Sea and related areas such that possible impacts of these discharges can be properly evaluated.
Journal of Environmental Radioactivity | 2016
J.E. Brown; Ingar Amundsen; Jerzy Bartnicki; M. Dowdall; J. E. Dyve; A. Hosseini; Hugh Klein; W.J.F. Standring
Objects containing radioactivity have been routinely dumped in Arctic waters near NW Russia up until the 1990s. One of the most radioactive objects in this region, the nuclear submarine K-27, was dumped in Stepogovo Fjord and contained spent nuclear fuel (SNF). Although the two K-27 submarine reactors were mothballed before dumping, concerns about the potential long term risks of contamination remain and plans to retrieve and decommission K-27 exist. In this article, human dose and environmental impact aseessments are presented for two possible future scenarios involving: (1) an ingress of water into a reactor in situ leading to a spontaneous chain reaction (SCR) and (2) an on-board fire when SNF is being removed at the mainland decommissiong site at Gremhika Bay on the Kola Peninsula. Assessments have been completed using conservative assumptions, focusing on possible effects to Norwegian territory. Atmospheric transport and deposition of radioactivity was modelled near field and regionally, using appropriate models, whilst human doses and environmental exposures were modelled using a standard IAEA approach and the ERICA tool, respectively. Results indicate that large areas of Norwegian territory could be affected by fallout from the Gremhika scenario, especially in the north, though at levels two orders of magnitude lower than those observed after the Chernobyl accident. Potential doses, primarily due to ground shine, to a critical group of personnel on-site at Stepogovo resulting from a SCR could require preventative measures based on ICRP recommendations (20-100xa0mSv). Doses to non-human biota in Norway for the Gremhika scenario would be negligible, typical of background dose rates for terrestrial organisms.
Journal of Environmental Radioactivity | 2017
M. Dowdall; Y. Bondar; Lindis Skipperud; V. Zabrotski; M. Nandrup Pettersen; Ø.G. Selnæs; J.E. Brown
The effects of fire events on contaminant radionuclides within soils of the Belarusian Exclusion Zone were investigated. A number of cores were taken from locations known to have been subject to fire events in the past as well as a series of cores from nearby unburnt locations. Both burnt and unburnt cores were analyzed for contaminant radionuclides as well as a range of relevant soil parameters. The distribution of 137Cs between various fractions (reversibly bound, irreversibly bound and insoluble) was analyzed. Results indicate no evidence of enhancement or enrichment of radionuclides within the soil column although this does not negate the possibility that such effects were evident at some point in the past, the fire events at two of the sites having occurred almost ten years earlier. Evidence was present of a persistent effect on how 137Cs was distributed between different fractions of the soil, primarily in relation to the proportions associated with oxides of Fe and Mn and organic matter. The results of the study appear to indicate that the long-term effects of a forest fire on contaminant 137Cs within the soil column are expressed through changes in the physico-chemical forms of the nuclide to a larger extent than simple redistribution of the contaminant within the soil column.
Journal of Environmental Radioactivity | 2014
Yu. I. Bondar; A.D. Navumau; Aleksander Nikolaevich Nikitin; J. Brown; M. Dowdall
Forest fires and wild fires are recognized as a possible cause of resuspension and redistribution of radioactive substances when occurring on lands contaminated with such materials, and as such are a matter of concern within the regions of Belarus and the Ukraine which were contaminated by the Chernobyl accident in 1986. Modelling the effects of such fires on radioactive contaminants is a complex matter given the number of variables involved. In this paper, a probabilistic model was developed using empirical data drawn from the Polessie State Radiation-Ecological Reserve (PSRER), Belarus, and the Maximum Entropy Method. Using the model, it was possible to derive estimates of the contribution of fire events to overall variability in the levels of (137)Cs and (239,240)Pu in ground air as well as estimates of the deposition of these radionuclides to specific water bodies within the contaminated areas of Belarus. Results indicate that fire events are potentially significant redistributors of radioactive contaminants within the study area and may result in additional contamination being introduced to water bodies.
Journal of Environmental Radioactivity | 2017
A. Hosseini; Ingar Amundsen; J. Brown; M. Dowdall; Michael Karcher; F. Kauker; R. Schnur
There is increasing concern regarding the issue of dumped nuclear waste in the Arctic Seas and in particular dumped objects with Spent Nuclear Fuel (SNF). Amongst dumped objects in the Arctic, the dumped Russian submarine K-27 has received great attention as it contains two reactors with highly enriched fuel and lies at a depth of about 30xa0m under water. To address these concerns a health and environmental impact assessment has been undertaken. Marine dispersion of potentially released radionuclides as a consequence of different hypothetical accident scenarios was modelled using the model NAOSIM. The outputs from the dispersion modelling have been used as inputs to food-chain transfer and environmental dosimetry models. The annual effective doses for subsistence fishing communities of the Barents-Kara seas region do not exceed 0.6xa0mSv for hypothetical accidents located at Stepovogo fjord or the Barents Sea. For high rate consumers of fish in Norway, following a potential accident at the Gremikha Bay, annual effects doses would be at around 0.15xa0mSv. Accumulated doses (over 90 days) for various organisms and for all release scenarios considered were never in excess of 150xa0μGy. The levels of 137Cs derived for marine organism in areas close to Norway were not values that would likely cause concern from a regulatory perspective although for subsistence fishing communities close to the considered accident locations, it is not inconceivable that some restrictions on fishing etc. would need to be introduced.
Journal of Environmental Radioactivity | 2017
Per Strand; Synnöve Sundell-Bergman; J.E. Brown; M. Dowdall
The accident at the Fukushima-Daiichi Nuclear Power Station on March 11, 2011, led to significant contamination of the surrounding terrestrial and marine environments. Whilst impacts on human health remain the primary concern in the aftermath of such an accident, recent years have seen a significant body of work conducted on the assessment of the accidents impacts on both the terrestrial and marine environment. Such assessments have been undertaken at various levels of biological organisation, for different species, using different methodologies and coming, in many cases, to divergent conclusions as to the effects of the accident on the environment. This article provides an overview of the work conducted in relation to the environmental impacts of the Fukushima accident, critically comparing and contrasting methodologies and results with a view towards finding reasons for discrepancies, should they indeed exist. Based on the outcomes of studies conducted to date, it would appear that in order to avoid the fractured and disparate conclusions drawn in the aftermath of previous accidents, radioactive contaminants and their effects can no longer simply be viewed in isolation with respect to the ecosystems these effects may impact. A combination of laboratory based and field studies with a focus on ecosystem functioning and effects could offer the best opportunities for coherence in the interpretation of the results of studies into the environmental impacts of ionising radiation.