M.E. De Lima
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.E. De Lima.
Toxicon | 2008
Kenia Pedrosa Nunes; A. Costa-Gonçalves; Luciana Franco Lanza; Steyner F. Cortes; Marta N. Cordeiro; Michael J. Richardson; A.M.C. Pimenta; Robert Clinton Webb; Romulo Leite; M.E. De Lima
The venom of the spider Phoneutria nigriventer contains several toxins that have bioactivity in mammals and insects. Accidents involving humans are characterized by various symptoms including penile erection. Here we investigated the action of Tx2-6, a toxin purified from the P. nigriventer spider venom that causes priapism in rats and mice. Erectile function was evaluated through changes in intracavernosal pressure/mean arterial pressure ratio (ICP/MAP) during electrical stimulation of the major pelvic ganglion (MPG) of normotensive and deoxycorticosterone-acetate (DOCA)-salt hypertensive rats. Nitric oxide (NO) release was detected in cavernosum slices with fluorescent dye (DAF-FM) and confocal microscopy. The effect of Tx2-6 was also characterized after intracavernosal injection of a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME. Subcutaneous or intravenous injection of Tx2-6 potentiated the elevation of ICP/MAP induced by ganglionic stimulation. L-NAME inhibited penile erection and treatment with Tx2-6 was unable to reverse this inhibition. Tx2-6 treatment induced a significant increase of NO release in cavernosum tissue. Attenuated erectile function of DOCA-salt hypertensive rats was fully restored after toxin injection. Tx2-6 enhanced erectile function in normotensive and DOCA-salt hypertensive rats, via the NO pathway. Our studies suggest that Tx2-6 could be important for development of new pharmacological agents for treatment of erectile dysfunction.
Biochemical and Biophysical Research Communications | 2008
Thiago Verano-Braga; Cibele Rocha-Resende; D.M. Silva; D. Ianzer; Marie-France Martin-Eauclaire; Pierre E. Bougis; M.E. De Lima; Robson A.S. Santos; A.M.C. Pimenta
Using a proteomic approach, a new structural family of peptides was put in evidence in the venom of the yellow scorpion Tityus serrulatus. Tityus serrulatus Hypotensins (TsHpt) are random-coiled linear peptides and have a similar bradykinin-potentiating peptide (BPP) amino acid signature. TsHpt-I (2.7kDa), the first member of this family, was able to potentiate the hypotensive effects of bradykinin (BK) in normotensive rats. Using the C-terminal of this peptide as a template, a synthetic analog peptide (TsHpt-I([17-25])) was designed to held the BK-potentiating effect. A relevant hypotensive effect, independent on BK, was also observed on both TsHpt (native and synthetic). To better evaluate this hypotensive effect, we examined the vasorelaxation of aortic rings from male Wistar rats and the peptides were able to induce endothelium-dependent vasorelaxation dependent on NO release. Both TsHpt could not inhibit ACE activity. These peptides appear to exert their anti-hypertensive effect through NO-dependent and ACE-independent mechanisms.
Toxicon | 2002
Flávia de Marco Almeida; A.M.C. Pimenta; S.G de Figueiredo; Marcelo Matos Santoro; Marie-France Martin-Eauclaire; Carlos R. Diniz; M.E. De Lima
Enzymes with gelatinolytic activity were detected in Tityus bahiensis and Tityus serrulatus venom. Their activity was optimal at pH 8.0 in SDS-PAGE-gelatin. They were inhibited by PMSF but not by iodoacetamide, pepstatin or phenantrolin in the assay conditions used. This suggests that these enzymes are serine proteases. The presence of metal ions did not affect the proteolytic activity of these enzymes. Several possible functions may be envisaged for these enzymes: in tissue permeabilization, pancreatitis and toxin processing.
Toxicon | 1993
M.E. De Lima; Marie-France Martin-Eauclaire; Carlos Chávez-Olórtegui; Carlos R. Diniz; Claude Granier
The antigenic properties of alpha-type and beta-type toxins purified from Tityus serrulatus (Ts) venom were analysed by radioimmunoassay, using rabbit antibodies raised against Ts VII, the main beta-type toxin in the venom, and against Ts IV, an alpha-type toxin. The anti-Ts VII serum did not recognize either the other beta-toxins Ts I and Ts II or the alpha-toxin Ts IV; the anti-Ts IV serum did not bind any of the three beta-toxins Ts I, Ts II or Ts VII. Thus, Tityus toxins display at least three distinct antigenic reactivity patterns.
Toxicon | 2010
Filipe Andrich; J.B.T. Carnielli; Juliana Silva Cassoli; Roberto Queiroga Lautner; Robson A.S. Santos; A.M.C. Pimenta; M.E. De Lima; Suely G. Figueiredo
A new vasoactive cytolytic toxin, referred to as Sp-CTx, has been purified from the venom of the scorpionfish Scorpaena plumieri by a combination of gel filtration and anion exchange chromatographies. An estimation of Sp-CTx native molecular mass, performed by size exclusion chromatography, demonstrated that it is a 121 kDa protein. Further physicochemical studies revealed its glycoproteic nature and dimeric constitution, comprising subunits of approximately 65 kDa (MALDI-TOF-MS). Such protein has proved to possess a potent hemolytic activity on washed rabbit erythrocytes (EC(50) 0.46 nM), whose effect was strongly reduced after treatment with antivenom raised against stonefish venom -Synanceja trachynis (SFAV). This cross-reactivity has been confirmed by western blotting. Like S. plumieri whole venom (100 microg/mL), Sp-CTx (1-50 nM) caused a biphasic response on phenylephrine pre-contracted rat aortic rings, characterized by an endothelium- and dose-dependent relaxation phase followed by a contractile phase. The vasorelaxant activity has been abolished by l-NAME, demonstrating the involvement of nitric oxide on the response. We report here the first isolation of a cytolytic/vasoactive protein from scorpionfish venom and the data provided suggest structural and functional similarities between Sp-CTx and previously published stonefish hemolytic toxins.
Amino Acids | 2010
D. M. dos Santos; Rodrigo M. Verly; Dorila Piló-Veloso; M.L.A. De Maria; M.A.R. de Carvalho; P. S. Cisalpino; Betânia Maria Soares; Cláudio Galuppo Diniz; Luiz de Macêdo Farias; D. F. F. Moreira; F. Frézard; Marcelo P. Bemquerer; A.M.C. Pimenta; M.E. De Lima
LyeTx I, an antimicrobial peptide isolated from the venom of Lycosa erythrognatha, known as wolf spider, has been synthesised and its structural profile studied by using the CD and NMR techniques. LyeTx I has shown to be active against bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Candida krusei and Cryptococcus neoformans) and able to alter the permeabilisation of l-α-phosphatidylcholine-liposomes (POPC) in a dose-dependent manner. In POPC containing cholesterol or ergosterol, permeabilisation has either decreased about five times or remained unchanged, respectively. These results, along with the observed low haemolytic activity, indicated that antimicrobial membranes, rather than vertebrate membranes seem to be the preferential targets. However, the complexity of biological membranes compared to liposomes must be taken in account. Besides, other membrane components, such as proteins and even specific lipids, cannot be discarded to be important to the preferential action of the LyeTx I to the tested microorganisms. The secondary structure of LyeTx I shows a small random-coil region at the N-terminus followed by an α-helix that reached the amidated C-terminus, which might favour the peptide-membrane interaction. The high activity against bacteria together with the moderate activity against fungi and the low haemolytic activity have indicated LyeTx I as a good prototype for developing new antibiotic peptides.
Journal of Molecular Graphics & Modelling | 2002
A.M Siqueira; N.F Martins; M.E. De Lima; Carlos R. Diniz; A Cartier; David Brown; B Maigret
Crotamine, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus is a strongly basic 42-amino acid polypeptide belonging to the small basic myotoxin family. As no tridimensional structure is available for this myotoxin subfamily, despite its important pharmacological interest, we propose in this paper a theoretical 3D model for crotamine. Starting from a homology modelling procedure, followed by intensive molecular dynamics (MD) simulations in water and complementary CD experiments, the designed 3D model is the first example of a tridimensional structure in this family of small basic myotoxins. Crotamine, therefore, belongs to a newly identified structural family presenting a common fold also found in beta-defensin and antopleurine-B. The proposed 3D model will be used for future calculations about crotamine aggregation and interaction with membranes.
Toxicon | 2010
Fernanda S. Torres; Carolina Nunes da Silva; Luciana Franco Lanza; Agenor V. Santos; A.M.C. Pimenta; M.E. De Lima; Marcelo R.V. Diniz
In the current study, the putative cDNA for PnTx2-6 toxin of the Phoneutria nigriventer spider venom was cloned and expressed as tioredoxin fusion protein in the cytoplasm of Escherichia coli. The fusion protein was purified from the bacterial extracts by combination of immobilized Ni-ion affinity and gel filtration chromatographies. Then, it was cleaved by enterokinase and the generated recombinant PnTx2-6 (rPnTx2-6) was further purified by reverse-phase HPLC. Likewise the native toxin purified from the spider venom, rPnTx2-6 potentiates the erectile function when injected in rats. This result indicates that the production of functional recombinant PnTx2-6 might be an alternative to provide this basic and valuable tool for study, as well as for further understanding such complex physiological system, including its correlation with the central nervous system and local tissue factors.
Brain Research | 2002
Roberta Amaral Mafra; L.C. de Oliveira; C.A.G. Ferreira; M.E. De Lima; Paulo S.L. Beirão; Jader Santos Cruz
To determine whether [Ca(2+)](e) modulates glutamate re-uptake, we studied the uptake mechanism into rat cerebrocortical synaptosomes. The removal of extracellular Ca(2+) caused a negative modulation in the uptake mechanism. The calculated K(50) value was 0.185 +/- 0.019 mM (n = 4). The Michaelis-Menten data analysis indicate that absence of Ca(2+) diminished the V(max) kinetic parameter by about 60% without changing significantly the K(m) suggesting a non-competitive mechanism. We also tested the involvement of intracellular Ca(2+) in this phenomenon by trapping BAPTA into the synaptosomal vesicles to control the Ca(2+) concentration. Our results suggest that intracellular Ca(2+) changes have a less predominant role on the glutamate uptake than do extracellular Ca(2+). These findings argue in favor of an important role of extracellular [Ca(2+)] in maintaining the L-glutamate re-uptake mechanism in the mammalian central nervous system.
Brazilian Journal of Medical and Biological Research | 1999
Raquel Gouvea Dos Santos; Carlos R. Diniz; Marta N. Cordeiro; M.E. De Lima
Tx1, a neurotoxin isolated from the venom of the South American spider Phoneutria nigriventer, produces tail elevation, behavioral excitation and spastic paralysis of the hind limbs after intracerebroventricular injection in mice. Since Tx1 contracts isolated guinea pig ileum, we have investigated the effect of this toxin on acetylcholine release, as well as its binding to myenteric plexus-longitudinal muscle membranes from the guinea pig ileum. [125I]-Tx1 binds specifically and with high affinity (Kd = 0.36 +/- 0.02 nM) to a single, non-interacting (nH = 1.1), low capacity (Bmax 1.1 pmol/mg protein) binding site. In competition experiments using several compounds (including ion channel ligands), only PhTx2 and PhTx3 competed with [125I]-Tx1 for specific binding sites (K0.5 apparent = 7.50 x 10(-4) g/l and 1.85 x 10(-5) g/l, respectively). PhTx2 and PhTx3, fractions from P. nigriventer venom, contain toxins acting on sodium and calcium channels, respectively. However, the neurotoxin PhTx2-6, one of the isoforms found in the PhTx2 pool, did not affect [125I]-Tx1 binding. Tx1 reduced the [3H]-ACh release evoked by the PhTx2 pool by 33%, but did not affect basal or KCl-induced [3H]-ACh release. Based on these results, as well as on the homology of Tx1 with toxins acting on calcium channels (omega-Aga IA and IB) and its competition with [125I]-omega-Cono GVIA in the central nervous system, we suggest that the target site for Tx1 may be calcium channels.