Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. E. White-Scharf is active.

Publication


Featured researches published by M. E. White-Scharf.


Journal of Clinical Investigation | 2000

Mixed chimerism and tolerance without whole body irradiation in a large animal model

Yasushi Fuchimoto; Christene A. Huang; Kazuhiko Yamada; Akira Shimizu; Hiroshi Kitamura; Robert B. Colvin; Vincent R. Ferrara; Michael C. Murphy; Megan Sykes; M. E. White-Scharf; David M. Neville; David H. Sachs

Mixed hematopoietic chimerism may provide a treatment for patients with nonmalignant hematologic diseases, and may tolerize patients to organ allografts without requiring chronic immunosuppression. However, the toxicity of the usual conditioning regimens has limited the clinical applicability of this approach. These regimens generally include some level of whole body irradiation (WBI), which is thought to facilitate engraftment either by making room for donor hematopoietic stem cells or by providing sufficient host immunosuppression to enable donor cells to engraft. Here, we have established mixed chimerism across both minor and major histocompatibility barriers in swine, by using high doses of peripheral blood stem cells in the absence of WBI. After mixed chimerism was established, swine leukocyte antigen-matched (SLA-matched) donor skin grafts were tolerated and maintained for a prolonged period, whereas third-party SLA-matched skin was rejected promptly. Donor-matched kidney allografts were also accepted without additional immunosuppression. Because of its low toxicity, this approach has potential for a wide range of clinical applications. Our data may indicate that niches for engrafting stem cells are filled by mass action and that WBI, which serves to empty some of these niches, can be omitted if the donor inoculum is sufficiently large and if adequate host T-cell depletion is achieved before transplant.


Transplantation | 2000

High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response

L. Bühler; Michel Awwad; M. Basker; S. Gojo; A. Watts; S. Treter; K. Nash; G. Oravec; Q. Chang; Aron D. Thall; Julian D. Down; Megan Sykes; David Andrews; Robert Sackstein; M. E. White-Scharf; David H. Sachs; David K. C. Cooper

BACKGROUND In pig-to-primate organ transplantation, hyperacute rejection can be prevented, but the organ is rejected within days by acute vascular rejection, in which induced high-affinity anti-Gal alpha1-3Gal (alphaGal) IgG and possibly antibodies directed against new porcine (non-alphaGal) antigenic determinants are considered to play a major role. We have explored the role of an anti-CD40L monoclonal antibody in modifying the humoral response to porcine hematopoietic cells in baboons pretreated with a nonmyeloablative regimen. METHODS Porcine peripheral blood mobilized progenitor cells obtained by leukapheresis from both major histocompatibility complex-inbred miniature swine (n=7) and human decay-accelerating factor pigs (n=3) were transplanted into baboons. Group 1 baboons (n=3) underwent whole body (300 cGy) and thymic (700 cGy) irradiation, T cell depletion with ATG, complement depletion with cobra venom factor, short courses of cyclosporine, mycophenolate mofetil, porcine hematopoietic growth factors, and anti-alphaGal antibody depletion by immunoadsorption before transplantation of high doses (2-4 x 10(10)/cells/kg) of peripheral blood mobilized progenitor cells. In group 2 (n=5), cyclosporine was replaced by eight doses of anti-CD40L monoclonal antibodies over 14 days. The group 3 baboons (n=2) received the group 1 regimen plus 2 doses of anti-CD40L monoclonal antibodies (on days 0 and 2). RESULTS In group 1, sensitization to alphaGal (with increases in IgM and IgG of 3- to 6-fold and 100-fold, respectively) and the development of antibodies to new non-alphaGal porcine antigens occurred within 20 days. In group 2, no sensitization to alphaGal or non-alphaGal determinants was seen, but alphaGal-reactive antibodies did return to their pre- peripheral blood mobilized progenitor cells transplant levels. In group 3, attenuated sensitization to alphaGal antigens was seen after cessation of cyclosporine and mycophenolate mofetil therapy at 30 days (IgM 4-fold, IgG 8-30-fold), but no antibodies developed against new porcine determinants. In no baboon did anti-CD40L monoclonal antibodies prevent sensitization to its own murine antigens. CONCLUSIONS We believe these studies are the first to consistently demonstrate prevention of a secondary humoral response after cell or organ transplantation in a pig-to-primate model. The development of sensitization to the murine elements of the anti-CD40L monoclonal antibodies suggests that nonresponsiveness to cell membrane-bound antigen (e.g., alphaGal) is a specific phenomenon and not a general manifestation of immunological unresponsiveness. T cell costimulatory blockade may facilitate induction of mixed hematopoietic chimerism and, consequently, of tolerance to pig organs and tissues.


Transplantation | 2001

Pig kidney transplantation in baboons: anti-Gal(alpha)1-3Gal IgM alone is associated with acute humoral xenograft rejection and disseminated intravascular coagulation

L. Bühler; Kazuhiko Yamada; Hiroshi Kitamura; Ian P. J. Alwayn; M. Basker; James Z. Appel; Robert B. Colvin; M. E. White-Scharf; David H. Sachs; Simon C. Robson; Michel Awwad; David K. C. Cooper

BACKGROUND Kidneys harvested from miniature swine or pigs transgenic for human decay-accelerating factor (hDAF) were transplanted into baboons receiving an anti-CD154 monoclonal antibody (mAb) and either a whole body irradiation (WBI)- or cyclophosphamide (CPP)-based immunosuppressive regimen. METHODS Group 1 baboons (n=3) underwent induction therapy with WBI and thymic irradiation, pretransplantation antithymocyte globulin, and immunoadsorption of anti-Gal(alpha)1-3Gal (Gal) antibody (Ab). After transplantation of a miniature swine kidney, maintenance therapy comprised cobra venom factor, mycophenolate mofetil, and an anti-CD154 mAb (for 14-28 days). In group 2 (n=2), WBI was replaced by CPP in the induction protocol. Group 3 (n=3) animals received the group 2 regimen, but underwent transplantation with hDAF pig kidneys. RESULTS Group 1 and 2 animals developed features of disseminated intravascular coagulation (DIC), with reductions of fibrinogen and platelets and increases of prothrombin time, partial thromboplastin time, and fibrin split products. Graft survival was for 6-13 days. Histology showed mild acute humoral xenograft rejection (AHXR) of the kidneys, but severe rejection of the ureters. Group 3 animals developed features of DIC in two of three cases during the fourth week, with AHXR in the third case. Graft survival was for 28 (n=1) or 29 (n=2) days. Histology of day 15 biopsy specimens showed minimal focal mononuclear cellular infiltrates, with predominantly CD3+ cells. By days 28 and 29, kidneys showed mild-to-moderate features of AHXR. In all groups, the humoral response was manifest by reappearance of anti-Gal IgM below baseline level, with no or low return of anti-Gal IgG. All excised kidneys showed IgM deposition, but no complement and no or minimal IgG deposition. No baboon showed a rebound of anti-Gal Ab immediately after excision of the graft, and anti-Gal Ab increased over pretransplantation levels only when anti-CD154 mAb was discontinued. CONCLUSIONS DIC was observed with WBI- or CPP-based therapy, and after miniature swine or hDAF kidney transplantation. AHXR+/-DIC was observed in all recipients even in the absence of complement and no or low levels of anti-Gal IgG, but was significantly delayed in the hDAF recipients. These results confirm our earlier observation that CD154 blockade prevents T cell-dependent sensitization in baboons to pig antigens, but that baseline natural anti-Gal Ab production is not inhibited. We suggest that IgM deposition, even in the absence of IgG and complement, leads to endothelial cell activation with the development of DIC, even when there are only minimal histologic changes of AHXR.


Transplantation | 2002

Pig hematopoietic cell chimerism in baboons conditioned with a nonmyeloablative regimen and CD154 blockade.

L. Bühler; Michel Awwad; S. Treter; Q. Chang; M. Basker; Ian P. J. Alwayn; Katsuhito Teranishi; Thomas Ericsson; K. Moran; David Harper; Barbara Kurilla-Mahon; Christene A. Huang; Robert Sackstein; Megan Sykes; M. E. White-Scharf; David H. Sachs; Julian D. Down; David K. C. Cooper

BACKGROUND In an attempt to induce mixed hematopoietic chimerism and transplantation tolerance in the pig-to-primate model, we have infused high-dose porcine peripheral blood progenitor cells (PBPC) into baboons pretreated with a nonmyeloablative regimen and anti-CD154 monoclonal antibody (mAb). METHODS Group 1 baboons (n=2) received a nonmyeloablative regimen including whole body irradiation, pharmacological immunosuppression, porcine hematopoietic growth factors, and immunoadsorption of anti-Galalpha1,3Gal (Gal) antibody before infusion of high doses of PBPC (2.7-4.6x10(10) cells/kg). In group 2 (n=5), cyclosporine was replaced by anti-CD154 mAb. Group 3 (n=3) received the group 1 regimen plus anti-CD154 mAb. RESULTS In group 1, pig chimerism was detected in the blood by flow cytometry (FACS) for 5 days (with a maximum of 14%), and continuously up to 13 days by polymerase chain reaction (PCR). In group 2, pig chimerism was detectable for 5 days by FACS (maximum 33%) and continuously up to 28 days by PCR. In group 3, initial pig chimerism was detectable for 5 days by FACS (maximum 73%). Two of three baboons showed reappearance of pig cells on days 11 and 16, respectively. In one, in which no anti-Gal IgG could be detected for 30 days, pig cells were documented in the blood by FACS on days 16-22 (maximum 6% on day 19) and pig colony-forming cells were present in the blood on days 19-33, which we interpreted as evidence of engraftment. Microchimerism was continuous by PCR up to 33 days. CONCLUSIONS These results suggest that there is no absolute barrier to pig hematopoietic cell engraftment in primates, and that this may be facilitated if the return of anti-Gal IgG can be prevented.


Xenotransplantation | 2000

Plasma perfusion by apheresis through a Gal immunoaffinity column successfully depletes anti-Gal antibody: experience with 320 aphereses in baboons.

A. Watts; Alicia Foley; Michel Awwad; S Treter; G. Oravec; L. Bühler; Ian P. J. Alwayn; Tomasz Kozlowski; Denis Lambrigts; S. Gojo; M. Basker; M. E. White-Scharf; David Andrews; David H. Sachs; David K. C. Cooper

Abstract: Background: Anti‐Galα1–3Gal (Gal) antibodies (Gal Ab) contribute to the rejection of porcine organs transplanted into primates. Extracorporeal immunoadsorption (EIA) has been developed to eliminate Gal Ab from the circulation.


Transplantation | 2002

Depletion of anti-gal antibodies in baboons by intravenous therapy with bovine serum albumin conjugated to gal oligosaccharides.

Katsuhito Teranishi; Bernd Gollackner; L. Bühler; Christoph Knosalla; L. Correa; Julian D. Down; M. E. White-Scharf; David H. Sachs; Michel Awwad; David K. C. Cooper

BACKGROUND Anti-Galalpha 1-3Gal (Gal) antibodies (Ab) play a key role in the rejection of pig cells or organs transplanted into primates. A course of extracorporeal immunoadsorption (EIA) of anti-Gal Ab using an immunoaffinity column of a Gal type 6 oligosaccharide depletes Ab successfully, but Ab returns during the next few days. Although therapy with an anti-CD154 monoclonal antibody (mAb) prevents an induced Ab response to Gal or non-Gal epitopes, T cell-independent natural anti-Gal IgM and IgG return to baseline (pretransplant) levels. We have investigated the capacity of continuous i.v. infusion of bovine serum albumin conjugated to Gal type 6 oligosaccharide (BSA-Gal) to deplete or maintain depletion of circulating anti-Gal Ab. METHODS Porcine peripheral blood mobilized progenitor cells (PBPC) obtained by leukapheresis from MHC-inbred miniature swine (n=6) were transplanted into baboons. Group 1 baboons (n=4) underwent whole body (300 cGy) and thymic (700 cGy) irradiation, T cell depletion with antithymocyte globulin, complement depletion with cobra venom factor, short courses of anti-CD154 mAb therapy (20 mg/kg i.v. on alternate days), cyclosporine (CyA) (in two baboons only), mycophenolate mofetil, and porcine hematopoietic growth factors. Anti-Gal Ab depletion by EIA was carried out before transplantation of high doses (2-4x 1010 cells/kg) of PBPC. Group 2 baboons (n=3) received the group 1 regimen (including CyA) plus a continuous i.v. infusion of BSA-Gal. To prevent sensitization to BSA, anti-CD154 mAb therapy was continued until BSA-Gal administration was discontinued. RESULTS In group 1, Gal-reactive Ab returned to pre-PBPC transplant levels within 15-21 days, but no induced Ab to Gal or non-Gal determinants developed while anti-CD154 mAb therapy was being administered. In group 2, anti-Gal Ab was either not measurable or minimally measurable while BSA-Gal was being administered. After discontinuation of BSA-Gal, Ab did not return to pre-PBPC transplant level for more than 40-60 days, and no sensitization developed even when all therapy was discontinued. In one baboon, however, Ab to Gal type 2, but not type 6, returned during BSA-Gal therapy. CONCLUSIONS Prevention of the induced humoral response to Gal and non-Gal epitopes by anti-CD154 mAb therapy has been reported previously by our group, but our studies are the first to demonstrate a therapy that resulted in an absence of natural anti-Gal Ab for a prolonged period. The combination of BSA-Gal and T cell costimulatory blockade may facilitate survival of pig cells and organs transplanted into primates. The return in one baboon of Ab reactive with the Gal type 2 oligosaccharide, but not type 6, indicates some polymorphism of anti-Gal Ab and suggests that, to be effective in all cases, the infusion of a combination of type 6 and type 2 BSA-Gal may be required.


Transplantation | 2001

CD40-CD154 pathway blockade requires host macrophages to induce humoral unresponsiveness to pig hematopoietic cells in baboons.

L. Bühler; Ian P. J. Alwayn; M. Basker; G. Oravec; Aron D. Thall; M. E. White-Scharf; David H. Sachs; Michel Awwad; David K. C. Cooper

The effect of CD154 blockade and macrophage depletion or inhibition on baboon humoral and cellular immune responses to pig antigens was studied in a pig-to-baboon peripheral blood mobilized progenitor cell (PBPC) transplantation model aimed at inducing tolerance. We infused pig PBPCs in baboons pretreated with a nonmyeloablative regimen along with murine anti-human CD154 monoclonal antibody (mAb) and macrophage-depleting or -inhibiting agents. Group 1 baboons (n=2) underwent a nonmyeloablative regimen and immunoadsorption of anti-Gal(alpha)1,3Gal (Gal) antibody (Ab) before intravenous infusion of high doses (1.3-4.6 x 10(10)cells/kg) of PBPCs. In group 2 (n=5), cyclosporine was replaced by 8 doses of anti-CD154 mAb over 14 days. Group 3 (n=3) received the group 2 regimen plus medronate liposomes (n=2) or commercially available human intravenous immunoglobulin G depleted of anti-Gal Ab (n=1) to deplete/inhibit recipient macrophages. Group 1 developed sensitization to Gal and also developed new Ab to non-Gal porcine antigens within 10 to 20 days. In group 2, no sensitization to Gal or non-Gal determinants was seen, but Gal-reactive antibodies did return to their preleukocyte transplantation levels. CD154 blockade, therefore, induced humoral unresponsiveness to pig cells. In group 3, sensitization to Gal was seen in all three baboons at 20 days, and Abs against new porcine determinants developed in one baboon. The depletion or inhibition of host macrophages, therefore, prevented the induction of humoral unresponsiveness by CD154 blockade. These results suggest that CD154 blockade induces humoral unresponsiveness by a mechanism that involves the indirect pathway of antigen presentation. In vitro investigation of baboon anti-pig mixed lymphocyte reaction confirmed that only the indirect pathway is efficiently blocked by anti-CD154 mAb. The mechanism in which blockade of the CD40-CD154 pathway induces its effect remains to be determined, but it could involve the generation of regulatory cells capable of suppressing the direct pathway.


Transplantation | 2000

Cytokine-mobilized peripheral blood progenitor cells for allogeneic reconstitution of miniature swine.

Christine Colby; Q. Chang; Yasushi Fuchimoto; Vincent R. Ferrara; Michael Murphy; Robert Sackstein; Thomas R. Spitzer; M. E. White-Scharf; David H. Sachs

BACKGROUND Because of the relative ease of acquisition, increased yield, and improved engraftment characteristics, mobilized peripheral blood progenitor (stem) cells (PBSCs) have recently become the preferred source for hematopoietic stem cell transplantation. In our laboratory, procurement of a megadose of PBSCs is necessary for on-going studies evaluating non-myelosuppressive transplant regimens for the induction of mixed chimerism and allograft tolerance. To exploit hematopoietic growth factor synergy, we have sought to combine growth factors with proven utility to improve PBSC mobilization and maximize our PBSC procurement through an automated collection procedure. METHODS Mobilization characteristics of PBSCs were determined in 2-5-month-old miniature swine. Animals received either swine recombinant stem cell factor (pSCF, 100 microg/kg) and swine recombinant interleukin 3 (pIL-3, 100 microg/kg), administered intramuscularly for 8 days, or pSCF, pIL-3, and human recombinant granulocyte-colony stimulating factor (hG-CSF), at 10 microg/kg. Leukapheresis was performed beginning on day 5 of cytokine treatment and continued daily for 3 days. RESULTS Collection of PBSCs from cytokine-mobilized animals via an automated leukapheresis procedure demonstrated a 10-fold increase in the number of total nucleated cells (TNC) (20-30 x 10(10) TNC) compared to bone marrow harvesting (2-3 x 10(10) total TNC). A more rapid rise in white blood cells (WBCs) was seen after administration of all three cytokines compared to pSCF and pIL-3 alone. An increase in colony-forming unit granulocyte-macrophage frequency measured daily from peripheral blood during cytokine treatment, was seen with the addition of hG-CSF to pSCF/pIL-3 correlating well with the rise in WBCs. Similarly, the addition of hG-CSF demonstrated a notable increase in the median progenitor cell yield from the 3-day leukapheresis procedure. Cytokine-mobilized PBSCs were capable of hematopoietic reconstitution. PBSCs mobilized with pSCF/pIL-3 were infused into an SLA-matched recipient conditioned with cyclophosphamide (50 mg/kg) and total body irradiation 1150 cGy. Neutrophil and platelet engraftment occurred on days 5 and 7, respectively, with minimal evidence of graft-versus-host disease. Complete donor chimerism has been demonstrated 331 days after transplant. CONCLUSIONS Our preliminary results show that in this well-defined miniature swine model, recombinant swine cytokine combinations (pSCF, pIL-3 with or without hG-CSF) successfully mobilize a high yield of progenitor cells for allogeneic transplantation. Furthermore, these cytokine-mobilized PBSCs demonstrate the potential to reconstitute hematopoiesis and provide long-term engraftment in miniature swine.


Transplantation Proceedings | 2000

Effect of B cell/plasma cell depletion or suppression on Anti-Gal antibody in the baboon

M. Basker; Ian P. J. Alwayn; S Treter; D Harper; L. Bühler; David Andrews; A Thall; Denis Lambrigts; Michel Awwad; M. E. White-Scharf; David H. Sachs; David K. C. Cooper

HE presence of anti-Gal antibody (anti-Gal) remains a major barrier to transplantation in the pig-to-primate model. 1 Extracorporeal immunoadsorption (EIA) using columns of Gal oligosaccharide successfully depletes antiGal, but continuing production of anti-Gal limits graft survival. We therefore assessed the efficacy of whole body irradiation (WBI), selected pharmacologic agents, immunotoxins (IT), and monoclonal antibodies (mAb) on Band/or plasma-cell depletion or function and on rate of return of anti-Gal.


Transplantation Proceedings | 2001

Miniature swine and hDAF pig kidney transplantation in baboons treated with a nonmyeloablative regimen and CD154 blockade.

L. Bühler; Kazuhiko Yamada; Ian P. J. Alwayn; Hiroshi Kitamura; M. Basker; Rolf N. Barth; James Z. Appel; Michel Awwad; A Thall; M. E. White-Scharf; David H. Sachs; David K. C. Cooper

Collaboration


Dive into the M. E. White-Scharf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aron D. Thall

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge