M. Ejrnaes
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Ejrnaes.
Applied Physics Letters | 2007
M. Ejrnaes; R. Cristiano; O. Quaranta; S. Pagano; A. Gaggero; F. Mattioli; R. Leoni; B. Voronov; G. N. Gol’tsman
We have realized superconducting single photon detectors with reduced inductance and increased signal pulse amplitude. The detectors are based on a parallel connection of ultrathin NbN nanowires with a common bias inductance. When properly biased, an absorbed photon induces a cascade switch of all the parallel wires generating a signal pulse amplitude of 2mV. The parallel wire configuration lowers the detector inductance and reduces the response time well below 1ns.
Journal of Applied Physics | 2010
Anthony Annunziata; O. Quaranta; Daniel F. Santavicca; A. Casaburi; Luigi Frunzio; M. Ejrnaes; Michael J. Rooks; R. Cristiano; S. Pagano; Aviad Frydman; Daniel E. Prober
We study the reset dynamics of niobium(Nb)superconductingnanowire single-photon detectors (SNSPDs) using experimental measurements and numerical simulations. The numerical simulations of the detection dynamics agree well with experimental measurements, using independently determined parameters in the simulations. We find that if the photon-induced hotspot cools too slowly, the device will latch into a dc resistive state. To avoid latching, the time for the hotspot to cool must be short compared to the inductive time constant that governs the resetting of the current in the device after hotspot formation. From simulations of the energy relaxation process, we find that the hotspot cooling time is determined primarily by the temperature-dependent electron-phonon inelastic time. Latching prevents reset and precludes subsequent photon detection. Fast resetting to the superconducting state is, therefore, essential, and we demonstrate experimentally how this is achieved. We compare our results to studies of reset and latching in niobium nitride SNSPDs.
Superconductor Science and Technology | 2009
M. Ejrnaes; A. Casaburi; O. Quaranta; S. Marchetti; A. Gaggero; F. Mattioli; R. Leoni; S. Pagano; R. Cristiano
Superconducting nanowire single photon detectors (SNSPDs) have been realized using an innovative parallel wire configuration. This configuration allows, at the same time, a large detection area and a fast response, with the additional advantage of large signal amplitudes. The detectors have been thoroughly characterized in terms of signal properties (amplitude, risetime and falltime), detector operation (latching and not latching) and quantum efficiency (at 850 nm). It has been shown that the parallel SNSPD is able to provide significantly higher maximum count rates for large area SNSPDs than meandered SNSPDs. Through a proper parallel wire configuration the increase in maximum count rate can be obtained without latching problems.
Applied Physics Letters | 2009
Nobuyuki Zen; A. Casaburi; Shigetomo Shiki; K. Suzuki; M. Ejrnaes; R. Cristiano; Masataka Ohkubo
Superconducting stripline detectors (SSLDs) are promising for detecting keV molecules at nanosecond response times and with mass-independent detection efficiency. However, a fast response time is incompatible with practical centimeter detector size. A parallel configuration of striplines provides a means to address this problem. Experimental results and simulation for promisingly large 1-mm-square parallel niobium SSLDs show that nanosecond pulses are produced by superconducting-normal transition within only one of the parallel striplines instead of cascade switching of all the parallel striplines. Successful detection of a series of multimers of immunoglobulin G up to 584 kDa supports the mass-independent efficiency for mass spectrometry.
Applied Physics Letters | 2009
A. Casaburi; Nobuyuki Zen; K. Suzuki; M. Ejrnaes; S. Pagano; R. Cristiano; Masataka Ohkubo
A large-area (200×200 μm2) superconducting stripline detector based on a parallel configuration of superconducting Nb nanowires is presented. We show that the parallel configuration provides a smart way to control the physical nonequilibrium state induced by the molecular impacts, which allows realizing large sensitive area and subnanosecond response at the same time. The experiments were carried out with molecular ions radiation in a keV energy range. The observed rise time was below 400 ps and the relaxation time was 500 ps, the best in this class of superconducting molecular detectors.
Applied Physics Letters | 2010
N. Marrocco; G. Pepe; Antonio Capretti; L. Parlato; V. Pagliarulo; G. Peluso; A. Barone; R. Cristiano; M. Ejrnaes; A. Casaburi; N. Kashiwazaki; Tohru Taino; Hiroaki Myoren; Roman Sobolewski
We present measurements of ferromagnet/superconductor (NiCu/NbN) and plain superconducting (NbN) nanostripes with the linewidth ranging from 150 to 300 nm. The NiCu (3 nm)/NbN (8 nm) bilayers, as compared to NbN (8 nm), showed a up to six times increase in their critical current density, reaching at 4.2 K the values of 5.5 MA/cm2 for a 150 nm wide nanostripe meander and 12.1 MA/cm2 for a 300 nm one. We also observed six-time sensitivity enhancement when the 150 nm wide NiCu/NbN nanostripe was used as an optical detector. The strong critical current enhancement is explained by the vortex pinning strength and density increase in NiCu/NbN bilayers and confirmed by approximately tenfold increase in the vortex polarizability factor.
Applied Physics Letters | 2011
A. Casaburi; M. Ejrnaes; Nobuyuki Zen; M. Ohkubo; S. Pagano; R. Cristiano
Fast detectors with large area are required in time-of-flight mass spectrometers for high throughput analysis of biological molecules. We fabricated and characterized subnanosecond 1×1 mm2 NbN superconducting strip-line detectors. The influence of the strip-line thickness on the temporal characteristics and efficiency of the detector for the impacts of keV accelerated molecules is investigated. We find that the increase of thickness improves both efficiency and response time. In the thicker sample we achieved a rise time of 380 ps, a fall time of 1.38 ns, and a higher count rate. The physics involved in this behavior is investigated.
Superconductor Science and Technology | 2014
Riccardo Arpaia; M. Ejrnaes; L. Parlato; R. Cristiano; Marco Arzeo; Thilo Bauch; Shahid Nawaz; F. Tafuri; Giovanni Piero Pepe; Floriana Lombardi
By using nanolithography and a soft etching procedure, we have realized YBa2Cu3O7-x/La0.7Sr0.3MnO3 (YBCO/LSMO) nanowires, with cross sections down to 100 x 50 nm(2) that ensure the cover age of areas up to 10 x 30 mu m(2). The LSMO layer acts as a capping for YBCO, minimizing the degradation of the superconducting properties taking place during the patterning; moreover, as a ferromagnetic manganite, it is expected to accelerate the relaxation dynamics of quasiparticles in YBCO, making such a system potentially attractive for applications in superconducting ultrafast optoelectronics. The reproducibility of the values of the critical current densities measured in different devices with the same geometry makes our nanowires ideal candidates for photoresponse experiments. First measurements have shown a satisfactory photoresponse from YBCO/LSMO devices.
Applied Physics Letters | 2009
M. Ejrnaes; A. Casaburi; R. Cristiano; O. Quaranta; S. Marchetti; Nadia Martucciello; S. Pagano; A. Gaggero; F. Mattioli; R. Leoni; Paul Cavalier; Jean Claude Villégier
We investigate the timing jitter in parallel superconducting NbN-nanowire single photon detectors based on a cascade switch mechanism. The measured timing jitter is asymmetric and has an oscillatory dependence on bias current. At the highest bias current the full width at half maximum was 1.5 times larger than an on-chip reference meander NbN nanowire. A physical model of the dynamics occurring during cascade switch is developed, that quantitatively accounts for our observations as a consequence of different nanowire critical currents within the detector.
Journal of Modern Optics | 2009
M. Ejrnaes; A. Casaburi; R. Cristiano; O. Quaranta; S. Marchetti; S. Pagano
An analysis of different strategies for increasing the maximum count rate of superconducting single photon detectors using parallel nanowires is performed with particular emphasis on the expected behaviour when the detector area is increased. We find that for a serial connection of blocks of parallel nanowires, the maximum count rate decreases with the square root of the detector area, whereas it decreases proportional to the detector area for current meandered detectors. Using this design we estimate that a signal pulse falltime of 7.8 ns for a 84 × 84 µm2 parallel detector based on current material parameters should be obtainable. We argue that the slow decrease of count rate with detector area might permit detectors based on parallel nanowires to fully exploit the available cooling power.
Collaboration
Dive into the M. Ejrnaes's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs