M.F.R. Pereira
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.F.R. Pereira.
Carbon | 1999
José L. Figueiredo; M.F.R. Pereira; Maria A. Freitas; J.J.M. Órfão
Abstract A NORIT activated carbon was modified by different chemical and thermal treatments (including oxidation in the gas and liquid phases) in order to obtain materials with different surface properties. Several techniques were used to characterize these materials including nitrogen adsorption, chemical and thermal analyses, XPS, TPD and DRIFTS. The results obtained by TPD agree quantitatively with the elemental and proximate analyses of the oxidized materials, and qualitatively with the observations by DRIFTS. A simple deconvolution method is proposed to analyse the TPD spectra, allowing for the quantitative determination of the amount of each functional group on the surface. A multiple gaussian function has been shown to fit the data adequately, the parameters obtained for each fit matching very well the features observed in the experimentally determined TPD spectra. It is shown that gas phase oxidation of the carbon increases mainly the concentration of hydroxyl and carbonyl surface groups, while oxidations in the liquid phase increase especially the concentration of carboxylic acids.
Environment International | 2015
Ana R. Ribeiro; Olga C. Nunes; M.F.R. Pereira; Adrián M.T. Silva
Environmental pollution is a recognized issue of major concern since a wide range of contaminants has been found in aquatic environment at ngL(-1) to μgL(-1) levels. In the year 2000, a strategy was defined to identify the priority substances concerning aquatic ecosystems, followed by the definition of environmental quality standards (EQS) in 2008. Recently it was launched the Directive 2013/39/EU that updates the water framework policy highlighting the need to develop new water treatment technologies to deal with such problem. This review summarizes the data published in the last decade regarding the application of advanced oxidation processes (AOPs) to treat priority compounds and certain other pollutants defined in this Directive, excluding the inorganic species (cadmium, lead, mercury, nickel and their derivatives). The Directive 2013/39/EU includes several pesticides (aldrin, dichlorodiphenyltrichloroethane, dicofol, dieldrin, endrin, endosulfan, isodrin, heptachlor, lindane, pentachlorophenol, chlorpyrifos, chlorfenvinphos, dichlorvos, atrazine, simazine, terbutryn, diuron, isoproturon, trifluralin, cypermethrin, alachlor), solvents (dichloromethane, dichloroethane, trichloromethane and carbon tetrachloride), perfluorooctane sulfonic acid and its derivatives (PFOS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol and octylphenol, as well as the three compounds included in the recommendation for the first watch list of substances (diclofenac, 17-alpha-ethinylestradiol (EE2) and 17-beta-estradiol (E2)). Some particular pesticides (aclonifen, bifenox, cybutryne, quinoxyfen), organotin compounds (tributyltin), dioxins and dioxin-like compounds, brominated diphenylethers, hexabromocyclododecanes and di(2-ethylhexyl)phthalate are also defined in this Directive, but studies dealing with AOPs are missing. AOPs are recognized tools to destroy recalcitrant compounds or, at least, to transform them into biodegradable species. Diuron (a phenylurea herbicide) and atrazine (from the triazine chemical class) are the most studied pesticides from Directive 2013/39/EU. Fenton-based processes are the most frequently applied to treat priority compounds in water and their efficiency typically increases with the operating temperature as well as under UV or solar light. Heterogeneous photocatalysis is the second most used treatment to destroy pollutants defined in the Directive. Ozone alone promotes the partial oxidation of pollutants, and an increase in the effluent biodegradability, but complete mineralization of pollutants is difficult. To overcome this drawback, ozonation has been combined with heterogeneous catalysts, addition of H2O2, other AOPs (such as photocatalysis) or membrane technologies.
Applied Catalysis A-general | 1999
M.F.R. Pereira; J.J.M. Órfão; José L. Figueiredo
Activated carbons were used as catalysts for the oxidative dehydrogenation of ethylbenzene. The type and amount of functional groups on the surface of the carbon catalysts was modified by oxidative treatments in the gas or in the liquid phase, while heat treatments at different temperatures were used to selectively remove some of the functional groups. The performance of these catalysts was evaluated in terms of conversion, styrene yield and selectivity. The results show that the gas phase treatments lead to improved performance associated with an increase in the amount of carbonyl/quinone groups on the surface, which were identified as the active sites for the reaction. A good correlation between catalytic activity and the concentration of these surface groups was obtained.
Water Research | 2016
Marta O. Barbosa; Nuno F.F. Moreira; Ana R. Ribeiro; M.F.R. Pereira; Adrián M.T. Silva
Although there are no legal discharge limits for micropollutants into the environment, some regulations have been published in the last few years. Recently, a watch list of substances for European Union-wide monitoring was reported in the Decision 2015/495/EU of 20 March 2015. Besides the substances previously recommended to be included by the Directive 39/2013/EU, namely two pharmaceuticals (diclofenac and the synthetic hormone 17-alpha-ethinylestradiol (EE2)) and a natural hormone (17-beta-estradiol (E2)), the first watch list of 10 substances/groups of substances also refers three macrolide antibiotics (azithromycin, clarithromycin and erythromycin), other natural hormone (estrone (E1)), some pesticides (methiocarb, oxadiazon, imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid and triallate), a UV filter (2-ethylhexyl-4-methoxycinnamate) and an antioxidant (2,6-di-tert-butyl-4-methylphenol) commonly used as food additive. Since little is known about the removal of most of the substances included in the Decision 2015/495/EU, particularly regarding realistic concentrations in aqueous environmental samples, this review aims to: (i) overview the European policy in the water field; (ii) briefly describe the most commonly used conventional and advanced treatment processes to remove micropollutants; (iii) summarize the relevant data published in the last decade, regarding occurrence and removal in aqueous matrices of the 10 substances/groups of substances that were recently included in the first watch list for European Union monitoring (Decision 2015/495/EU); and (iv) highlight the lack of reports concerning some substances of the watch list, the study of un-spiked aquatic matrices and the assessment of transformation by-products.
Water Research | 2011
Sónia A. C. Carabineiro; T. Thavorn-Amornsri; M.F.R. Pereira; José L. Figueiredo
The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings.
Journal of Hazardous Materials | 2009
V.P. Santos; M.F.R. Pereira; P.C.C. Faria; J.J.M. Órfão
The decolourisation of dye solutions by oxidation with H(2)O(2), using activated carbon as catalyst, is studied. For this purpose, three different samples, mainly differing in the respective surface chemistries, were prepared and characterized. Moreover, this work involved three pH levels, corresponding to acid, neutral and alkaline solutions, and six dyes belonging to several classes. The catalytic decolourisation tests were performed in a laboratorial batch reactor. Adsorption on activated carbon and non-catalytic peroxidation kinetic experiments were also carried out in the same reactor, in order to compare the efficiencies of the three processes. The non-catalytic reaction is usually inefficient and, typically, adsorption presents a low level of decolourisation. In these cases, the combination of activated carbon with hydrogen peroxide may significantly enhance the process, since the activated carbon catalyses the decomposition of H(2)O(2) into hydroxyl radicals, which are very reactive. Based on the experiments with the different activated carbon samples, which have similar physical properties, it is proved that the surface chemistry of the catalyst plays a key role, being the basic sample the most active. This is discussed considering the involvement of the free electrons on the graphene basal planes of activated carbon as active centres for the catalytic reaction. Additionally, it is shown that the decolourisation is enhanced at high pH values, and a possible explanation for this observation, based on the proposed mechanism, is given.
Applied Catalysis A-general | 2000
M.F.R. Pereira; J.J.M. Órfão; José L. Figueiredo
Abstract Extended catalytic tests show that coke deposition is responsible for the deactivation of activated carbon catalysts in the oxidative dehydrogenation of ethylbenzene (ODE). Temperature-programmed desorption (TPD), DRIFTS, textural and elemental analyses of used catalysts have shown that not only the great majority of the micropores become blocked, but also that the amounts of oxygen and hydrogen in the catalyst composition increase with time on stream, leading to a material increasingly more reactive towards oxidation. It was observed that after a few days on stream, the rate of carbon gasification became larger than the rate of coke deposition, leading to a decrease in catalyst weight. Working under milder conditions (lower temperature and oxygen partial pressure) delayed this effect. The increase in the concentration of surface groups with time does not result in a proportional increase in the activity of the catalysts, because the majority of the groups created are not active for the ODE reaction.
ACS Applied Materials & Interfaces | 2011
Clara Pereira; C. Alves; A. Monteiro; C. Magen; A. M. Pereira; A. Ibarra; M. R. Ibarra; Pedro B. Tavares; J. P. Araújo; Ginesa Blanco; José M. Pintado; Ana P. Carvalho; J. Pires; M.F.R. Pereira; Cristina Freire
This work reports the synthesis and characterization of mesoporous silica nanoparticles (MSNs) functionalized with tridecafluorooctyltriethoxysilane (F13) and their in situ incorporation onto cotton textiles. The hybrid MSNs and the functional textiles were prepared by a one-pot co-condensation methodology between tetraethylorthosilicate (TEOS) and F13, with hexadecyltrimethylammonium chloride (CTAC) as the template and triethanolamine as the base. The influence of the F13 to TEOS molar ratio (1:10, 1:5 and 1:3) on the nanoparticle morphology, porosity, degree of functionalization, and hydro/oleophobic properties is discussed. The hybrid nanosilicas presented high colloidal stability and were spherical and monodispersed with average particle size of ∼45 nm. They also showed high surface areas, large pore volumes, and a wormhole-type mesoporous structure. The increase in the organosilane proportion during the co-condensation process led to a more radially branched wormhole-like mesoporosity, a decrease in the surface area, pore volume, and amount of surface silanol groups, and an enrichment of the surface with fluorocarbon moieties. These changes imparted hydrophobic and oleophobic properties to the materials, especially to that containing the highest F13 loading. Cotton textiles were coated with the F13-MSNs through an efficient and less time-consuming route. The combination between surface roughness and mesoporosity imparted by the MSNs, and the low surface energy provided by the organosilane resulted in superhydrophobic functional textiles. Moreover, the textile with the highest loading of fluorocarbon groups was superamphiphobic.
Journal of Hazardous Materials | 2012
Alexandra Gonçalves; J.J.M. Órfão; M.F.R. Pereira
Two carbon materials (multi-walled carbon nanotubes, MWCNTs, and activated carbon) were investigated as ozonation catalysts for the mineralization of the antibiotic sulphamethoxazole (SMX). MWCNTs presented a higher catalytic performance than activated carbons, which was justified by their differences in surface chemistry and by the higher internal mass transfer resistances expected for activated carbons. 3-Amino-5-methylisoxazole and p-benzoquinone were detected as primary products of single and catalytic ozonation of SMX, whereas oxamic, oxalic, pyruvic and maleic acids were identified as refractory final oxidation products. The original sulphur of the SMX was almost completely converted to sulphate and part of the nitrogen was converted to NH4+ and NO3-. The presence of the radical scavenger tert-butanol during catalytic and single ozonation evidenced the participation of HO radicals in the oxidation mechanisms of SMX, especially in the mineralization of several intermediates. Microtox tests revealed that simultaneous use of ozone and MWCNTs originated lower acute toxicity. The time course of all detected compounds was studied and the transformation pathway for the complete mineralization of SMX by single and catalytic ozonation in the presence of the selected materials was elucidated.
Applied Catalysis A-general | 2000
M.F.R. Pereira; J.J.M. Órfão; José L. Figueiredo
A detailed kinetic study of the oxidative dehydrogenation of ethylbenzene in the presence of an activated carbon catalyst is presented. The partial pressures of ethylbenzene and oxygen, as well as temperature, were varied one at a time, covering a wide range of experimental conditions. The experimental results were found to be well described by a kinetic model in which the main reaction occurs by a redox mechanism involving quinone/hydroquinone groups on the surface of the carbon catalyst. The activation energies determined for the main reaction and for the formation of carbon oxides are comparable to those determined on coked oxide catalysts.