Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. F. Yan is active.

Publication


Featured researches published by M. F. Yan.


Optics Express | 2010

Seven-core multicore fiber transmissions for passive optical network

Benyuan Zhu; Thierry F. Taunay; M. F. Yan; John M. Fini; M. Fishteyn; E. M. Monberg

We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.


Optics Letters | 2006

Light propagation with ultralarge modal areas in optical fibers

Jeffrey W. Nicholson; S. Ghalmi; M. F. Yan; P. W. Wisk; Eric M. Monberg

We demonstrate robust single-transverse-mode light propagation in higher-order modes of a fiber, with effective area A(eff) ranging from 2,100 to 3,200 microm(2). These modes are accessed using long-period fiber gratings that enable higher-order-mode excitation over a bandwidth of 94 mm with greater than 99% of the light in the desired mode. The fiber is designed such that the effective index separation between modes is always large, hence minimizing in-fiber mode mixing and enabling light propagation over lengths as large as 12 m, with bends down to 4.5 cm radii. The modal stability increases with mode order, suggesting that A(eff) of this platform is substantially scalable.


Optics Express | 2011

112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber

Benyuan Zhu; Thierry F. Taunay; M. Fishteyn; Xiang Liu; S. Chandrasekhar; M. F. Yan; John M. Fini; E. M. Monberg

We describe a new multicore fiber (MCF) having seven single-mode cores arranged in a hexagonal array, exhibiting low crosstalk among the cores and low loss across the C and L bands. We experimentally demonstrate a record transmission capacity of 112 Tb/s over a 76.8-km MCF using space-division multiplexing and dense wavelength-division multiplexing (DWDM). Each core carries 160 107-Gb/s polarization-division multiplexed quadrature phase-shift keying (PDM-QPSK) channels on a 50-GHz grid in the C and L bands, resulting in an aggregate spectral efficiency of 14 b/s/Hz. We further investigate the impact of the inter-core crosstalk on a 107-Gb/s PDM-QPSK signal after transmitting through the center core of the MCF when all the 6 outer cores carry same-wavelength 107-Gb/s signals with equal powers, and discuss the system implications of core-to-core crosstalk on ultra-long-haul transmission.


Optics Letters | 2003

All-fiber, octave-spanning supercontinuum

Jeffrey W. Nicholson; M. F. Yan; P. W. Wisk; J. Fleming; Eric M. Monberg; A. Yablon; C. Jørgensen; T. Veng

We present an all-fiber supercontinuum source based on a passively mode-locked erbium fiber laser and a small-effective-area, germanium-doped silica fiber. The parallels between this system and the continuum generated in microstructured fibers with 800-nm pulses are discussed, and the role of dispersion is investigated experimentally. We construct a hybrid fiber by fusion splicing lengths of different-dispersion fiber together, generating more than an octave of bandwidth.


Optics Express | 2011

Amplification and noise properties of an erbium-doped multicore fiber amplifier

Kazi S. Abedin; Thierry F. Taunay; M. Fishteyn; M. F. Yan; Benyuan Zhu; John M. Fini; E. M. Monberg; P. W. Wisk

A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible.


Optics Express | 2004

High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation

J. W. Nicholson; Andrew D. Yablon; Paul S. Westbrook; Kenneth S. Feder; M. F. Yan

We present a source of high power femtosecond pulses at 1550 nm with compressed pulses at the end of a single mode fiber (SMF) pigtail. The system generates 34 femtosecond pulses at a repetition rate of 46 MHz, with average powers greater than 400 mW. The pulses are generated in a passively modelocked, erbium-doped fiber laser, and amplified in a short, erbium-doped fiber amplifier. The output of the fiber amplifier consists of highly chirped picosecond pulses. These picosecond pulses are then compressed in standard single mode fiber. While the compressed pulses in the SMF pigtail do show a low pedestal that could be avoided with the use of bulk-optic compression, the desire to compress the pulses in SMF is motivated by the ability to splice the single mode fiber to a nonlinear fiber, for continuum generation applications. We demonstrate that with highly nonlinear dispersion shifted fiber (HNLF) fusion spliced directly to the amplifier output, we generate a supercontinuum spectrum that spans more than an octave, with an average power 400 mW. Such a high power, all-fiber supercontinuum source has many important applications including frequency metrology and bio-medical imaging.


Optics Express | 2012

Cladding-pumped erbium-doped multicore fiber amplifier

Kazi S. Abedin; Thierry F. Taunay; M. Fishteyn; David J. DiGiovanni; V. R. Supradeepa; John M. Fini; M. F. Yan; Benyuan Zhu; E. M. Monberg

A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.


Optics Letters | 2006

Anomalous dispersion in a solid, silica-based fiber

S. Ghalmi; Jeffrey W. Nicholson; M. F. Yan; P. W. Wisk; Eric M. Monberg

We demonstrate an all-solid (nonholey), silica-based fiber with anomalous dispersion at wavelengths where silica material dispersion is negative. This is achieved by exploiting the enhanced dispersion engineering capabilities of higher-order modes in a fiber, yielding + 60 ps/nm km dispersion at 1080 nm. By coupling to the desired higher-order mode with low-loss in-fiber gratings, we realize a 5 m long fiber module with a 300 fs/nm dispersion that yields a 1 dB bandwidth of 51 nm with an insertion loss of approximately 0.1 dB at the center wavelength of 1080 nm. We demonstrate its functionality as a critical enabler for an all-fiber, Yb-based, mode-locked femtosecond ring laser.


optical fiber communication conference | 2011

Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber

Benyuan Zhu; Thierry F. Taunay; M. Fishteyn; Xiang Liu; S. Chandrasekhar; M. F. Yan; John M. Fini; E. M. Monberg; Kazi S. Abedin; P. W. Wisk; David W. Peckham; P. Dziedzic

We report the first experimental demonstration of space-division-multiplexed DWDM transmission of PDM-QPSK channels over a multicore fiber. A total capacity of 56-Tb/s (7×80×107-Gb/s) is transmitted over a 76.8-km seven-core-fiber with a record spectral-efficiency of 14-b/s/Hz.


Optics Letters | 2010

Raman fiber laser with 81 W output power at 1480 nm.

Jeffrey W. Nicholson; M. F. Yan; P. W. Wisk; J. Fleming; Eric M. Monberg; Thierry F. Taunay; Clifford Headley; David J. DiGiovanni

We demonstrate a Raman fiber laser with an operating wavelength of 1480 nm and record output power of 81 W. High-power operation is enabled by a long-period grating used to frustrate backward lasing at the Stokes wavelength in the Yb-doped fiber amplifier. A cascaded Raman fiber with a long-wavelength fundamental mode cutoff enables efficient multiple Stokes scattering from 1117 to 1480 nm while preventing further unwanted scattering to 1590 nm.

Collaboration


Dive into the M. F. Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey W. Nicholson

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John M. Fini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry F. Taunay

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan R. Newbury

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Scott A. Diddams

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge