Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Fajardo is active.

Publication


Featured researches published by M. Fajardo.


Nature | 2004

A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam

Philippe Zeitoun; Gabriel Faivre; S. Sebban; Tomas Mocek; A. Hallou; M. Fajardo; D. Aubert; Philippe Balcou; F. Burgy; D. Douillet; S. Kazamias; G. De Lachèze-Murel; T. Lefrou; S. Le Pape; Pascal Mercère; H. Merdji; Anne-Sophie Morlens; Jean-Philippe Rousseau; C. Valentin

Synchrotrons have for decades provided invaluable sources of soft X-rays, the application of which has led to significant progress in many areas of science and technology. But future applications of soft X-rays—in structural biology, for example—anticipate the need for pulses with much shorter duration (femtoseconds) and much higher energy (millijoules) than those delivered by synchrotrons. Soft X-ray free-electron lasers should fulfil these requirements but will be limited in number; the pressure on beamtime is therefore likely to be considerable. Laser-driven soft X-ray sources offer a comparatively inexpensive and widely available alternative, but have encountered practical bottlenecks in the quest for high intensities. Here we establish and characterize a soft X-ray laser chain that shows how these bottlenecks can in principle be overcome. By combining the high optical quality available from high-harmonic laser sources (as a seed beam) with a highly energetic soft X-ray laser plasma amplifier, we produce a tabletop soft X-ray femtosecond laser operating at 10 Hz and exhibiting full saturation, high energy, high coherence and full polarization. This technique should be readily applicable on all existing laser-driven soft X-ray facilities.


Optics Letters | 2006

Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics

Anne-Sophie Morlens; J. Gautier; Gilles Rey; Philippe Zeitoun; Jean-Pascal Caumes; Marylène Kos-Rosset; H. Merdji; S. Kazamias; K. Cassou; M. Fajardo

Soft-x-ray digital in-line microscopic holography is achieved using a fully coherent high-order harmonic source emitting at 32 nm. Combination of commercial-grade soft-x-ray optics and a back-illuminated CCD detector allows a compact and versatile holographic setup. Different experimental geometries have been tested by imaging calibrated 50 nm tips and 1 microm wires. Spatial resolution of 800 nm is measured with magnifications ranging from 30 to 110 and a numerical aperture around 0.01. Finally, the potentiality of three-dimensional numerical reconstruction from a single hologram acquisition is shown experimentally.


Nature Communications | 2015

Towards enabling femtosecond helicity-dependent spectroscopy with high-harmonic sources

Guillaume Lambert; B. Vodungbo; J. Gautier; B. Mahieu; Victor Malka; S. Sebban; Philippe Zeitoun; Jan Lüning; Jonathan Perron; A. Andreev; S. Stremoukhov; F. Ardana-Lamas; A. Dax; Christoph P. Hauri; Anna Barszczak Sardinha; M. Fajardo

Recent advances in high-harmonic generation gave rise to soft X-ray pulses with higher intensity, shorter duration and higher photon energy. One of the remaining shortages of this source is its restriction to linear polarization, since the yield of generation of elliptically polarized high harmonics has been low so far. We here show how this limitation is overcome by using a cross-polarized two-colour laser field. With this simple technique, we reach high degrees of ellipticity (up to 75%) with efficiencies similar to classically generated linearly polarized harmonics. To demonstrate these features and to prove the capacity of our source for applications, we measure the X-ray magnetic circular dichroism (XMCD) effect of nickel at the M2,3 absorption edge around 67 eV. There results open up the way towards femtosecond time-resolved experiments using high harmonics exploiting the powerful element-sensitive XMCD effect and resolving the ultrafast magnetization dynamics of individual components in complex materials.


Optics Letters | 2003

Longitudinal coherence measurements of a transient collisional x-ray laser

Raymond F. Smith; James Dunn; James R. Hunter; Joseph Nilsen; S. Hubert; Sylvie Jacquemot; Christian Remond; Remy Marmoret; M. Fajardo; Philippe Zeitoun; Laurent Vanbostal; Ciaran Lewis; Marie Françoise Ravet; Franck Delmotte

We present what is to our knowledge the first longitudinal coherence measurement of a transient inversion collisional x-ray laser. We investigated the picosecond output of a Ni-like Pd x-ray laser at 14.68 nm generated by the COMET laser facility at the Lawrence Livermore National Laboratory. Interference fringes were generated with a Michelson interferometer setup in which a thin multilayer membrane was used as a beam splitter. We determined the longitudinal coherence for the 4dS01→4pP11 lasing transition to be ~400μm (1/e half-width) by changing the length of one interferometer arm and measuring the resultant variation in fringe visibility. The inferred gain-narrowed linewidth of ~0.29pm is a factor of 4 less than previously measured in quasi-steady-state x-ray laser schemes.


Nature Photonics | 2012

A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers

Eduardo Oliva; M. Fajardo; Lianhe Li; M. Pittman; T. T. T. Le; J. Gautier; Guillaume Lambert; P. Velarde; D. Ros; S. Sebban; Philippe Zeitoun

X-ray free-electron lasers1, 2 delivering up to 1 × 1013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3, 4, 5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (1 × 1015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell–Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 5 × 1014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW.


Optics Express | 2009

Soft x-ray free electron laser microfocus for exploring matter under extreme conditions

A. J. Nelson; S. Toleikis; Henry N. Chapman; Sasa Bajt; J. Krzywinski; J. Chalupsky; L. Juha; Jaroslav Cihelka; V. Hajkova; L. Vysin; T. Burian; M. Kozlova; R. R. Fäustlin; B. Nagler; S. M. Vinko; T. Whitcher; T. Dzelzainis; O. Renner; Karel Saksl; A.R. Khorsand; Philip A. Heimann; R. Sobierajski; D. Klinger; M. Jurek; J.B. Pełka; Bianca Iwan; Jakob Andreasson; Nicusor Timneanu; M. Fajardo; J. S. Wark

We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 microJ, 5 Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) - PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of < or =1 microm. Observations were correlated with simulations of best focus to provide further relevant information.


New Journal of Physics | 2009

An optimized kHz two-colour high harmonic source for seeding free-electron lasers and plasma-based soft x-ray lasers

G. Lambert; J. Gautier; Christoph P. Hauri; Ph. Zeitoun; C. Valentin; T. Marchenko; F. Tissandier; J.-Ph. Goddet; M. Ribière; G. Rey; M. Fajardo; S. Sebban

Free-electron lasers (FEL) and plasma-based soft x-ray lasers (PSXL) have been recently evolving very fast from the vacuum ultraviolet to the soft x-ray region. Once seeded with high harmonics, these schemes are considered as the next generation soft x-ray light sources delivering ultrashort pulses with high temporal and spatial coherence. Here, we present a detailed experimental study of a kHz two-colour high harmonic generation performed in various gases and investigate its potential as a suitable evolution of the actual seeding sources. It turns out that this double harmonic content source is highly tuneable, controllable and delivers intense radiation (measured here with a calibrated photodiode) with only one order of magnitude difference in the photon yield from 65 to 13?nm. Then, first and foremost, injections could be achieved at wavelengths shorter than what was previously accessible in FEL and PSXL and/or additional energy could be extracted. Also, such a strong and handy seed could allow the saturation range of FEL devices to be greatly extended to shorter wavelengths and would bring higher spectral as well as intensity stabilities in this spectral zone.


Physics of Plasmas | 2015

The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser

Anna Lévy; P. Audebert; R. Shepherd; James Dunn; Marco Cammarata; O. Ciricosta; F. Deneuville; F. Dorchies; M. Fajardo; C. Fourment; David M. Fritz; J. Fuchs; J. Gaudin; M. Gauthier; A. Graf; Hae Ja Lee; Henrik T. Lemke; B. Nagler; J. Park; O. Peyrusse; A. B. Steel; S. M. Vinko; J. S. Wark; G. O. Williams; Diling Zhu; R.W. Lee

The efficiency and uniformity of heating induced by hard x-ray free-electron laser pulse is investigated for 0.5 μm silver foils using the X-ray Pump Probe instrument at the Linac Coherent Light Source facility. Intense 8.9 keV x-ray pulses of 60 fs duration deposit energy predominantly via inner-shell ionization to create a non-equilibrium Ag solid density plasma. The x-ray pulses are focused to 14 × 17 μm2 by means of beryllium lenses and by varying the total beam energy, the energy deposition is varied over a range of irradiances from 4.4 to 6.5 × 1015 W/cm2. Two time-and-space resolved interferometers simultaneously probed the expansion of the front and rear sample surfaces and find evidence of a nearly symmetric expansion pointing to the uniformity of energy deposition over the full target thickness. The experimental results are compared with two different hydrodynamic simulations of the sample expansion. The agreement between experimental and theoretical results yields an estimate of the temperature...


Nature Communications | 2016

Chirped pulse amplification in an extreme-ultraviolet free-electron laser

D. Gauthier; E. Allaria; M. Coreno; Ivan Cudin; Hugo Dacasa; M.B. Danailov; Alexander Demidovich; Simone Di Mitri; B. Diviacco; Eugenio Ferrari; P. Finetti; Fabio Frassetto; D. Garzella; S. Künzel; Vincent Leroux; B. Mahieu; N. Mahne; Michael Meyer; T. Mazza; Paolo Miotti; G. Penco; Lorenzo Raimondi; Primož Rebernik Ribič; R. Richter; Eléonore Roussel; Sebastian Schulz; Luca Sturari; Cristian Svetina; M. Trovo; Paul Andreas Walker

Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3–4.4 nm).


Optics Letters | 2009

Optimization of soft x-ray amplifier by tailoring plasma hydrodynamics.

E. Oliva; Ph. Zeitoun; S. Sebban; M. Fajardo; P. Velarde; K. Cassou; D. Ros

Plasma-based soft x-ray lasers have the potentiality to generate high-energy, highly coherent, short pulse beam. Thanks to their high density, plasmas created by interaction of intense laser with solid target should store the highest amount of energy among every plasma amplifiers. However, to date output energy from solid amplifiers remains as low as 60 nJ [1]. For 30 m micrometer focal line width, we demonstrated with the 2D hydrodynamic code with radiation transport in AMR ARWEN [2] that deleterious hydrodynamic effects, as the lateral expansion and thermal conduction, reduce the amplification surface and the gain coefficient. Thus, carefully tailoring the plasma shape is crucial for extracting energy stored in the plasma. With 1 mm wide plasma, energy as high as 20 J in sub-ps pulse is achievable [3]. With such tailored plasma, pumping efficiency has been increased by nearly a factor of 10 as compared to former plasma amplifiers.

Collaboration


Dive into the M. Fajardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Nelson

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. Valentin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Kazamias

University of Paris-Sud

View shared research outputs
Researchain Logo
Decentralizing Knowledge