Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Fondevila is active.

Publication


Featured researches published by M. Fondevila.


Forensic Science International-genetics | 2007

Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs

C. Phillips; Antonio Salas; Juan J. Sanchez; M. Fondevila; Antonio Gómez-Tato; José Antonio Álvarez-Dios; Manuel Calaza; M. Casares de Cal; David Ballard; M.V. Lareu; Angel Carracedo

Tests that infer the ancestral origin of a DNA sample have considerable potential in the development of forensic tools that can help to guide crime investigation. We have developed a single-tube 34-plex SNP assay for the assignment of ancestral origin by choosing ancestry-informative markers (AIMs) exhibiting highly contrasting allele frequency distributions between the three major population-groups. To predict ancestral origin from the profiles obtained, a classification algorithm was developed based on maximum likelihood. Sampling of two populations each from African, European and East Asian groups provided training sets for the algorithm and this was tested using the CEPH Human Genome Diversity Panel. We detected negligible theoretical and practical error for assignments to one of the three groups analyzed with consistently high classification probabilities, even when using reduced subsets of SNPs. This study shows that by choosing SNPs exhibiting marked allele frequency differences between population-groups a practical forensic test for assigning the most likely ancestry can be achieved from a single multiplexed assay.


Forensic Science International-genetics | 2008

Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers

C. Phillips; M. Fondevila; Manuel García-Magariños; Anayanci Rodríguez; Antonio Salas; Angel Carracedo; M.V. Lareu

When using a standard battery of STRs for relationship testing a small proportion of analyses can give ambiguous results - where the claimed relationship cannot be confirmed by a high enough paternity index or excluded with fully incompatible genotypes. The majority of such cases arise from unknowingly testing a brother of the true father and observing only a small number of exclusions that can each be interpreted as one- or two-step mutations. Although adding extra STRs might resolve a proportion of cases, there are few properly validated extra STRs available, while the commonly added hypervariable SE33 locus is four times more mutable than average, increasing the risk of ambiguous results. We have found SNPs in large multiplexes are much more informative for both low initial probabilities or ambiguous exclusions and at the same time provide a more reliable genotyping approach for the highly degraded DNA encountered in many identification cases. Eight relationship cases are outlined where the addition of SNP data resolved analyses that had remained ambiguous even with extended STR typing. In addition we have made simulations to ascertain the frequency of failing to obtain exclusions or conclusive probabilities of paternity with different marker sets when a brother of the true father is tested. Results indicate that SNPs are statistically more efficient than STRs in resolving cases that distinguish first-degree relatives in deficient pedigrees.


Forensic Science International-genetics | 2011

Analysis of global variability in 15 established and 5 new European Standard Set (ESS) STRs using the CEPH human genome diversity panel

C. Phillips; L. Fernandez-Formoso; Manuel García-Magariños; L. Porras; Torben Tvedebrink; Jorge Amigo; M. Fondevila; Antonio Gómez-Tato; José Antonio Álvarez-Dios; Ana Freire-Aradas; Alberto Gómez-Carballa; Ana Mosquera-Miguel; Angel Carracedo; M.V. Lareu

The CEPH human genome diversity cell line panel (CEPH-HGDP) of 51 globally distributed populations was used to analyze patterns of variability in 20 core human identification STRs. The markers typed comprised the 15 STRs of Identifiler, one of the most widely used forensic STR multiplexes, plus five recently introduced European Standard Set (ESS) STRs: D1S1656, D2S441, D10S1248, D12S391 and D22S1045. From the genotypes obtained for the ESS STRs we identified rare, intermediate or off-ladder alleles that had not been previously reported for these loci. Examples of novel ESS STR alleles found were characterized by sequence analysis. This revealed extensive repeat structure variation in three ESS STRs, with D12S391 showing particularly high variability for tandem runs of AGAT and AGAC repeat units. The global geographic distribution of the CEPH panel samples gave an opportunity to study in detail the extent of substructure shown by the 20 STRs amongst populations and between their parent population groups. An assessment was made of the forensic informativeness of the new ESS STRs compared to the loci they will replace: CSF1PO, D5S818, D7S820, D13S317 and TPOX, with results showing a clear enhancement of discrimination power using multiplexes that genotype the new ESS loci. We also measured the ability of Identifiler and ESS STRs to infer the ancestry of the CEPH-HGDP samples and demonstrate that forensic STRs in large multiplexes have the potential to differentiate the major population groups but only with sufficient reliability when used with other ancestry-informative markers such as single nucleotide polymorphisms. Finally we checked for possible association by linkage between the two ESS multiplex STRs closely positioned on chromosome-12: vWA and D12S391 by examining paired genotypes from the complete CEPH data set.


Forensic Science International-genetics | 2007

Evaluation of the Genplex SNP typing system and a 49plex forensic marker panel.

C. Phillips; Rixun Fang; David Ballard; M. Fondevila; C. Harrison; F. Hyland; E. Musgrave-Brown; C. Proff; Eva Ramos-Luis; Beatriz Sobrino; Angel Carracedo; Manohar R. Furtado; D. Syndercombe Court; Peter M. Schneider

Using a 52 SNP marker set previously developed for forensic analysis, a novel 49plex assay has been developed based on the Genplex typing system, a modification of SNPlex chemistry (both Applied Biosystems) using oligo-ligation of pre-amplified DNA and dye-labeled, mobility modified detection probes. This gives highly predictable electrophoretic mobility of the allelic products generated from the assay to allow detection with standard capillary electrophoresis analyzers. The loci chosen comprise the 48 most informative autosomal SNPs from the SNPforID core discrimination set supplemented with the amelogenin gender marker. These SNPs are evenly distributed across all 22 autosomes, exhibit balanced polymorphisms in three major population groups and have been previously shown to be effective markers for forensic analysis. We tested the accuracy and reproducibility of the Genplex system in three SNPforID laboratories, each using a different Applied Biosystems Genetic Analyzer. Genotyping concordance was measured using replicates of 44 standardized DNA controls and by comparing genotypes for the same samples generated by the TaqMan, SNaPshot and Sequenom iPLEX SNP typing systems. The degree of informativeness of the 48 SNPs for forensic analysis was measured using previously estimated allele frequencies to derive the cumulative match probability and in paternity analysis using 24 trios previously typed with 18 STRs together with three CEPH families with extensive sibships typed with the 15 STRs in the Identifiler kit.


PLOS ONE | 2009

Ancestry analysis in the 11-M Madrid bomb attack investigation

C. Phillips; Lourdes Prieto; M. Fondevila; Antonio Salas; Antonio Gómez-Tato; José Antonio Álvarez-Dios; Antonio A. Alonso; Alejandro Blanco-Verea; Maria Brion; Marta Montesino; Angel Carracedo; Maria Victoria Lareu

The 11-M Madrid commuter train bombings of 2004 constituted the second biggest terrorist attack to occur in Europe after Lockerbie, while the subsequent investigation became the most complex and wide-ranging forensic case in Spain. Standard short tandem repeat (STR) profiling of 600 exhibits left certain key incriminatory samples unmatched to any of the apprehended suspects. A judicial order to perform analyses of unmatched samples to differentiate European and North African ancestry became a critical part of the investigation and was instigated to help refine the search for further suspects. Although mitochondrial DNA (mtDNA) and Y-chromosome markers routinely demonstrate informative geographic differentiation, the populations compared in this analysis were known to show a proportion of shared mtDNA and Y haplotypes as a result of recent gene-flow across the western Mediterranean, while any two loci can be unrepresentative of the ancestry of an individual as a whole. We based our principal analysis on a validated 34plex autosomal ancestry-informative-marker single nucleotide polymorphism (AIM-SNP) assay to make an assignment of ancestry for DNA from seven unmatched case samples including a handprint from a bag containing undetonated explosives together with personal items recovered from various locations in Madrid associated with the suspects. To assess marker informativeness before genotyping, we predicted the probable classification success for the 34plex assay with standard error estimators for a naïve Bayesian classifier using Moroccan and Spanish training sets (each n = 48). Once misclassification error was found to be sufficiently low, genotyping yielded seven near-complete profiles (33 of 34 AIM-SNPs) that in four cases gave probabilities providing a clear assignment of ancestry. One of the suspects predicted to be North African by AIM-SNP analysis of DNA from a toothbrush was identified late in the investigation as Algerian in origin. The results achieved illustrate the benefit of adding specialized marker sets to provide enhanced scope and power to an already highly effective system of DNA analysis for forensic identification.


Forensic Science International-genetics | 2007

Forensic validation of the SNPforID 52-plex assay

E. Musgrave-Brown; David Ballard; Kinga Balogh; Klaus Bender; Burkhard Berger; Magdalena Bogus; Claus Børsting; Maria Brion; M. Fondevila; C. Harrison; Ceylan Oguzturun; Walther Parson; C. Phillips; Carsten Proff; Eva Ramos-Luis; Juan J. Sanchez; Paula Diz; Bea Sobrino Rey; Beate Stradmann-Bellinghausen; C.R. Thacker; Angel Carracedo; Niels Morling; Richard Scheithauer; Peter M. Schneider; Denise Syndercombe Court

The advantages of single nucleotide polymorphism (SNP) typing in forensic genetics are well known and include a wider choice of high-throughput typing platforms, lower mutation rates, and improved analysis of degraded samples. However, if SNPs are to become a realistic supplement to current short tandem repeat (STR) typing methods, they must be shown to successfully and reliably analyse the challenging samples commonly encountered in casework situations. The European SNPforID consortium, supported by the EU GROWTH programme, has developed a multiplex of 52 SNPs for forensic analysis, with the amplification of all 52 loci in a single reaction followed by two single base extension (SBE) reactions which are detected with capillary electrophoresis. In order to validate this assay, a variety of DNA extracts were chosen to represent problems such as low copy number and degradation that are commonly seen in forensic casework. A total of 40 extracts were used in the study, each of which was sent to two of the five participating laboratories for typing in duplicate or triplicate. Laboratories were instructed to carry out their analyses as if they were dealing with normal casework samples. Results were reported back to the coordinating laboratory and compared with those obtained from traditional STR typing of the same extracts using Powerplex 16 (Promega). These results indicate that, although the ability to successfully type good quality, low copy number extracts is lower, the 52-plex SNP assay performed better than STR typing on degraded samples, and also on samples that were both degraded and of limited quantity, suggesting that SNP analysis can provide advantages over STR analysis in forensically relevant circumstances. However, there were also additional problems arising from contamination and primer quality issues and these are discussed.


Forensic Science International-genetics | 2013

Further development of forensic eye color predictive tests.

Y. Ruiz; C. Phillips; Antonio Gómez-Tato; José Antonio Álvarez-Dios; M. Casares de Cal; Raquel Cruz; O. Maroñas; Jens Söchtig; M. Fondevila; M.J. Rodriguez-Cid; Angel Carracedo; M.V. Lareu

In forensic analysis predictive tests for external visible characteristics (or EVCs), including inference of iris color, represent a potentially useful tool to guide criminal investigations. Two recent studies, both focused on forensic testing, have analyzed single nucleotide polymorphism (SNP) genotypes underlying common eye color variation (Mengel-From et al., Forensic Sci. Int. Genet. 4:323 and Walsh et al., Forensic Sci. Int. Genet. 5:170). Each study arrived at different recommendations for eye color predictive tests aiming to type the most closely associated SNPs, although both confirmed rs12913832 in HERC2 as the key predictor, widely recognized as the most strongly associated marker with blue and brown iris colors. Differences between these two studies in identification of other eye color predictors may partly arise from varying approaches to assigning phenotypes, notably those not unequivocally blue or dark brown and therefore occupying an intermediate iris color continuum. We have developed two single base extension assays typing 37 SNPs in pigmentation-associated genes to study SNP-genotype based prediction of eye, skin, and hair color variation. These assays were used to test the performance of different sets of eye color predictors in 416 subjects from six populations of north and south Europe. The presence of a complex and continuous range of intermediate phenotypes distinct from blue and brown eye colors was confirmed by establishing eye color populations compared to genetic clusters defined using Structure software. Our study explored the effect of an expanded SNP combination beyond six markers has on the ability to predict eye color in a forensic test without extending the SNP assay excessively - thus maintaining a balance between the tests predictive value and an ability to reliably type challenging DNA with a multiplex of manageable size. Our evaluation used AUC analysis (area under the receiver operating characteristic curves) and naïve Bayesian likelihood-based classification approaches. To provide flexibility in SNP-based eye color predictive tests in forensic applications we modified an online Bayesian classifier, originally developed for genetic ancestry analysis, to provide a straightforward system to assign eye color likelihoods from a SNP profile combining additional informative markers from the predictors analyzed by our study plus those of Walsh and Mengel-From. Two advantages of the online classifier is the ability to submit incomplete SNP profiles, a common occurrence when typing challenging DNA, and the ability to handle physically linked SNPs showing independent effect, by allowing the user to input frequencies from SNP pairs or larger combinations. This system was used to include the submission of frequency data for the SNP pair rs12913832 and rs1129038: indicated by our study to be the two SNPs most closely associated to eye color.


Forensic Science International-genetics | 2013

Revision of the SNPforID 34-plex forensic ancestry test: Assay enhancements, standard reference sample genotypes and extended population studies

M. Fondevila; C. Phillips; Carla Santos; A. Freire Aradas; Peter M. Vallone; John M. Butler; M.V. Lareu; Angel Carracedo

A revision of an established 34 SNP forensic ancestry test has been made by swapping the under-performing rs727811 component SNP with the highly informative rs3827760 that shows a near-fixed East Asian specific allele. We collated SNP variability data for the revised SNP set in 66 reference populations from 1000 Genomes and HGDP-CEPH panels and used this as reference data to analyse four U.S. populations showing a range of admixture patterns. The U.S. Hispanics sample in particular displayed heterogeneous values of co-ancestry between European, Native American and African contributors, likely to reflect in part, the way this disparate group is defined using cultural as well as population genetic parameters. The genotyping of over 700 U.S. population samples also provided the opportunity to thoroughly gauge peak mobility variation and peak height ratios observed from routine use of the single base extension chemistry of the 34-plex test. Finally, the genotyping of the widely used DNA profiling Standard Reference Material samples plus other control DNAs completes the audit of the 34-plex assay to allow forensic practitioners to apply this test more readily in their own laboratories.


Forensic Science International-genetics | 2008

Case report: Identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur

M. Fondevila; C. Phillips; Nuria Naverán; L.M. Fernández; María Cerezo; Antonio Salas; Angel Carracedo; M.V. Lareu

Applying two extraction protocols to isolate DNA from a charred femur recovered after a major forest fire, a range of established and recently developed forensic marker sets that included mini-STRs and SNPs were used to type the sample and confirm identity by comparison to a claimed daughter of the deceased. Identification of the remains suggested that the individual had been dead for 10 years and the DNA was therefore likely to be severely degraded from the combined effects of decomposition and exposure to very high temperatures. We used new marker sets specifically developed to analyze degraded DNA comprising both reduced-length amplicon STR sets and autosomal SNP multiplexes, giving an opportunity to assess the ability of each approach to successfully type highly degraded material from a challenging case. The results also suggest a modified ancient DNA extraction procedure offers improved typing success from degraded skeletal material.


Forensic Science International-genetics | 2008

Forensic typing of autosomal SNPs with a 29 SNP-multiplex—Results of a collaborative EDNAP exercise

Juan J. Sanchez; Claus Børsting; Kinga Balogh; Burkhard Berger; Magdalena Bogus; John M. Butler; Angel Carracedo; D. Syndercombe Court; Liz Dixon; B. Filipović; M. Fondevila; Peter Gill; C. Harrison; Carsten Hohoff; René Huel; Bertrand Ludes; Walther Parson; Thomas J. Parsons; E. Petkovski; C. Phillips; H. Schmitter; Peter M. Schneider; Peter M. Vallone; Niels Morling

We report the results of an inter-laboratory exercise on typing of autosomal single nucleotide polymorphisms (SNP) for forensic genetic investigations in crime cases. The European DNA Profiling Group (EDNAP), a working group under the International Society for Forensic Genetics (ISFG), organised the exercise. A total of 11 European and one US forensic genetic laboratories tested a subset of a 52 SNP-multiplex PCR kit developed by the SNPforID consortium. The 52 SNP-multiplex kit amplifies 52 DNA fragments with 52 autosomal SNP loci in one multiplex PCR. The 52 SNPs are detected in two separate single base extension (SBE) multiplex reactions with 29 and 23 SNPs, respectively, using SNaPshot kit, capillary electrophoresis and multicolour fluorescence detection. For practical reasons, only the 29 SBE multiplex reaction was carried out by the participating laboratories. A total of 11 bloodstains on FTA cards including a sample of poor quality and a negative control were sent to the laboratories together with the essential reagents for the initial multiplex PCR and the multiplex SBE reaction. The total SNP locus dropout rate was 2.8% and more than 50% of the dropouts were observed with the poor quality sample. The overall rate of discrepant SNP allele assignments was 2.0%. Two laboratories reported 60% of all the discrepancies. Two laboratories reported all 29 SNP alleles in all 10 positive samples correctly. The results of the collaborative exercise were surprisingly good and demonstrate that SNP typing with SBE, capillary electrophoresis and multicolour detection methods can be developed for forensic genetics.

Collaboration


Dive into the M. Fondevila's collaboration.

Top Co-Authors

Avatar

Angel Carracedo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

C. Phillips

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

M.V. Lareu

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Carla Santos

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Maria Victoria Lareu

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Antonio Salas

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonor Gusmão

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge