Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Fraser is active.

Publication


Featured researches published by M. Fraser.


The Astrophysical Journal | 2013

Super-luminous type Ic supernovae : catching a magnetar by the tail.

C. Inserra; S. J. Smartt; A. Jerkstrand; S. Valenti; M. Fraser; D. Wright; K. W. Smith; Ting-Wan Chen; R. Kotak; Andrea Pastorello; M. Nicholl; Fabio Bresolin; R. P. Kudritzki; Stefano Benetti; M. T. Botticella; W. S. Burgett; K. C. Chambers; Mattias Ergon; H. Flewelling; J. P. U. Fynbo; S. Geier; Klaus-Werner Hodapp; D. A. Howell; M. E. Huber; Nick Kaiser; G. Leloudas; L. Magill; E. A. Magnier; M. McCrum; N. Metcalfe

We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely PTF10hgi, SN2011ke, PTF11rks, SN2011kf and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high resolution, optical and near infrared spectrum from xshooter provides detection of a broad He I �10830 emission line in the spectrum (+50d) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M⊙ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favour energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spindown of a magnetar reproduces the extensive lightcurve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 . E(10 51 erg) . 6.9 and ejecta masses of 2.3 . Mej(M⊙) . 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx - the best sampled SL-SNe Ic so far - point toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic. Subject headings: supernovae: general - supernovae: individual (PTF10hgi, SN 2011ke, PTF11rks, SN 2011kf, SN 2012il) - stars: magnetars


The Astrophysical Journal | 2010

Ultra-bright optical transients are linked with type IC supernovae.

Andrea Pastorello; S. J. Smartt; M. T. Botticella; K. Maguire; M. Fraser; K. W. Smith; R. Kotak; L. Magill; S. Valenti; D. R. Young; S. Gezari; Fabio Bresolin; R.-P. Kudritzki; Dale Andrew Howell; Armin Rest; N. Metcalfe; Seppo Mattila; E. Kankare; Kuiyun Huang; Yuji Urata; W. S. Burgett; K. C. Chambers; T. Dombeck; H. Flewelling; T. Grav; J. N. Heasley; K. W. Hodapp; N. Kaiser; Gerard A. Luppino; Robert H. Lupton

Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~-21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.


Nature | 2013

Slowly fading super-luminous supernovae that are not pair-instability explosions

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; M. McCrum; R. Kotak; M. Fraser; D. Wright; Ting-Wan Chen; K. W. Smith; D. R. Young; S. A. Sim; S. Valenti; D. A. Howell; Fabio Bresolin; R.-P. Kudritzki; John L. Tonry; M. Huber; Armin Rest; Andrea Pastorello; L. Tomasella; Enrico Cappellaro; Stefano Benetti; Seppo Mattila; E. Kankare; T. Kangas; G. Leloudas; Jesper Sollerman; F. Taddia; Edo Berger

Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10−6 times that of the core-collapse rate.


The Astrophysical Journal | 2012

The Type IIb Supernova 2011dh from a Supergiant Progenitor

Melina C. Bersten; O. G. Benvenuto; K. Nomoto; Mattias Ergon; Gaston Folatelli; Jesper Sollerman; Stefano Benetti; M. T. Botticella; M. Fraser; R. Kotak; Keiichi Maeda; P. Ochner; L. Tomasella

A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star-with R {approx} 200 R{sub Sun }-is needed to reproduce the early light curve (LC) of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the supernova (SN) in deep pre-explosion images is the progenitor star. From the main peak of the bolometric LC and expansion velocities, we constrain the mass of the ejecta to be Almost-Equal-To 2 M{sub Sun }, the explosion energy to be E = (6-10) Multiplication-Sign 10{sup 50} erg, and the {sup 56}Ni mass to be approximately 0.06 M{sub Sun }. The progenitor star was composed of a helium core of 3-4 M{sub Sun} and a thin hydrogen-rich envelope of Almost-Equal-To 0.1M{sub Sun} with a main-sequence mass estimated to be in the range of 12-15 M{sub Sun }. Our models rule out progenitors with helium-core masses larger than 8 M{sub Sun }, which correspond to M{sub ZAMS} {approx}> 25M{sub Sun }. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.


The Astrophysical Journal | 2011

THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51

Justyn R. Maund; M. Fraser; Mattias Ergon; Andrea Pastorello; S. J. Smartt; Jesper Sollerman; Stefano Benetti; M. T. Botticella; F. Bufano; I.J. Danziger; R. Kotak; L. Magill; Andrew W. Stephens; S. Valenti

We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L ☉ = 4.92 ± 0.20 and T eff = 6000 ± 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M ZAMS = 13 ± 3 M ☉. The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess Hα emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitors hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.


Monthly Notices of the Royal Astronomical Society | 2014

Superluminous supernovae from PESSTO

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; J. P. Anderson; Charles Baltay; Stefano Benetti; T.-W. Chen; N. Elias-Rosa; U. Feindt; M. Fraser; Avishay Gal-Yam; E. Hadjiyska; D. A. Howell; R. Kotak; A. Lawrence; G. Leloudas; S. Margheim; Seppo Mattila; M. McCrum; R. McKinnon; Alexander Mead; Peter E. Nugent; D. Rabinowitz; Armin Rest; K. W. Smith; Jesper Sollerman; M. Sullivan; F. Taddia; S. Valenti

We present optical spectra and light curves for three hydrogen-poor superluminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a fewdays aftermaximum light to 100 d later shows them to be fairly typical of this class, with spectra dominated by Ca II, MgII, FeII, and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, Ni-56 decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 d after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct rebrightening at around 100 d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionization front breaking out of the ejecta.


Monthly Notices of the Royal Astronomical Society | 2016

Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae

J. D. Lyman; D. F. Bersier; P. A. James; Paolo A. Mazzali; J. J. Eldridge; M. Fraser; E. Pian

Literature data are collated for 38 stripped-envelope core-collapse supernovae (SE SNe; i.e. SNe IIb, Ib, Ic and Ic-BL) that have good light curve coverage in more than one optical band. Using bolometric corrections derived in previous work, the bolometric light curve of each SN is recovered and template bolometric light curves provided. Peak light distributions and decay rates are investigated; SNe subtypes are not cleanly distinguished in this parameter space, although some grouping of types does occur and there is a suggestion of a Phillips-like relation for most SNe Ic-BL. The bolometric light curves are modelled with a simple analytical prescription and compared to results from more detailed modelling. Distributions of the explosion parameters shows the extreme nature of SNe Ic-BL in terms of their 56Ni mass and the kinetic energy, however ejected masses are similar to other subtypes. SNe Ib and Ic have very similar distributions of explosion parameters, indicating a similarity in progenitors. SNe~IIb are the most homogeneous subtype and have the lowest average values for 56Ni mass, ejected mass, and kinetic energy. Ejecta masses for each subtype and SE SNe as a whole are inconsistent with those expected from very massive stars. The majority of the ejecta mass distribution is well described by more moderately massive progenitors in binaries, indicating these are the dominant progenitor channel for SE SNe.


Monthly Notices of the Royal Astronomical Society | 2011

SN 2009jf: A slow-evolving stripped-envelope core-collapse supernova

S. Valenti; M. Fraser; Stefano Benetti; Giuliano Pignata; Jesper Sollerman; C. Inserra; E. Cappellaro; Andrea Pastorello; S. J. Smartt; Mattias Ergon; M. T. Botticella; J. Brimacombe; F. Bufano; M. Crockett; I. Eder; Dino Fugazza; J. B. Haislip; Mario Hamuy; A. Harutyunyan; Kevin Ivarsen; E. Kankare; R. Kotak; Aaron Patrick Lacluyze; L. Magill; Seppo Mattila; Jose Manuel Campillos Maza; Paolo A. Mazzali; Daniel E. Reichart; S. Taubenberger; Massimo Turatto

We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from similar to 20 d before B-band maximum to 1 yr after maximum. We show ...


Monthly Notices of the Royal Astronomical Society | 2015

On the diversity of superluminous supernovae: ejected mass as the dominant factor

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; S. A. Sim; Ting-Wan Chen; Stefano Benetti; M. Fraser; Avishay Gal-Yam; E. Kankare; K. Maguire; K. W. Smith; M. Sullivan; S. Valenti; D. R. Young; Charles Baltay; F. E. Bauer; S. Baumont; D. F. Bersier; M. T. Botticella; Michael J. Childress; M. Dennefeld; M. Della Valle; N. Elias-Rosa; U. Feindt; L. Galbany; E. Hadjiyska; Laure Guillou; G. Leloudas; Paolo A. Mazzali

We assemble a sample of 24 hydrogen-poor superluminous supernovae (SLSNe). Parameterizing the light-curve shape through rise and decline time-scales shows that the two are highly correlated. Magnetar-powered models can reproduce the correlation, with the diversity in rise and decline rates driven by the diffusion time-scale. Circumstellar interaction models can exhibit a similar rise–decline relation, but only for a narrow range of densities, which may be problematic for these models. We find that SLSNe are approximately 3.5 mag brighter and have light curves three times broader than SNe Ibc, but that the intrinsic shapes are similar. There are a number of SLSNe with particularly broad light curves, possibly indicating two progenitor channels, but statistical tests do not cleanly separate two populations. The general spectral evolution is also presented. Velocities measured from Fe ii are similar for SLSNe and SNe Ibc, suggesting that diffusion time differences are dominated by mass or opacity. Flat velocity evolution in most SLSNe suggests a dense shell of ejecta. If opacities in SLSNe are similar to other SNe Ibc, the average ejected mass is higher by a factor 2–3. Assuming ? = 0.1?cm2?g?1, we estimate a mean (median) SLSN ejecta mass of 10 M? (6 M?), with a range of 3–30 M?. Doubling the assumed opacity brings the masses closer to normal SNe Ibc, but with a high-mass tail. The most probable mechanism for generating SLSNe seems to be the core collapse of a very massive hydrogen-poor star, forming a millisecond magnetar.


Astronomy and Astrophysics | 2014

Optical and near-infrared observations of SN 2011dh – The first 100 days

Mattias Ergon; Jesper Sollerman; M. Fraser; Andrea Pastorello; S. Taubenberger; N. Elias-Rosa; Melina C. Bersten; A. Jerkstrand; Stefano Benetti; M. T. Botticella; Claes Fransson; A. Harutyunyan; R. Kotak; S. J. Smartt; S. Valenti; F. Bufano; E. Cappellaro; M. Fiaschi; A. Howell; E. Kankare; L. Magill; Seppo Mattila; Justyn R. Maund; R. Naves; P. Ochner; J. Ruiz; K. W. Smith; L. Tomasella; M. Turatto

We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012). We find that the absorption minimum for the hydrogen lines is never seen below 11000 km s 1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between 10 and 15 days, close to the photosphere and then move outward in velocity until 40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the -rays is driving the early evolution of these lines. The Spitzer 4.5 m band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. The distance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day 1 respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.

Collaboration


Dive into the M. Fraser's collaboration.

Top Co-Authors

Avatar

S. J. Smartt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

S. Valenti

University of California

View shared research outputs
Top Co-Authors

Avatar

C. Inserra

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

E. Kankare

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

R. Kotak

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Avishay Gal-Yam

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge