M. G. Itkis
Joint Institute for Nuclear Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. G. Itkis.
Nature | 1999
Yu. Ts. Oganessian; A. V. Yeremin; A. G. Popeko; S. L. Bogomolov; G. V. Buklanov; M. L. Chelnokov; V. I. Chepigin; B. N. Gikal; V. A. Gorshkov; G. G. Gulbekian; M. G. Itkis; A. P. Kabachenko; A.Yu. Lavrentev; O. N. Malyshev; J. Roháč; R. N. Sagaidak; S. Hofmann; S. Saro; G. Giardina; K. Morita
The stability of heavy nuclides, which tend to decay by α-emission and spontaneous fission, is determined by the structural properties of nuclear matter. Nuclear binding energies and lifetimes increase markedly in the vicinity of closed shells of neutrons or protons (nucleons), corresponding to ‘magic’ numbers of nucleons; these give rise to the most stable (spherical) nuclear shapes in the ground state. For example, with a proton number of Z = 82 and a neutron number of N = 126, the nucleus 208Pb is ‘doubly-magic’ and also exceptionally stable. The next closed neutron shell is expected at N = 184, leading to the prediction of an ‘island of stability’ of superheavy nuclei, for a broad range of isotopes with Z = 104 to 120 (refs 1, 2). The heaviest known nuclei have lifetimes of less than a millisecond, but nuclei near the top of the island of stability are predicted to exist for many years. (In contrast, nuclear matter consisting of about 300 nucleons with no shell structure would undergo fission within about 10−20 seconds.) Calculations indicate that nuclei with N > 168 should already benefit from the stabilizing influence of the closed shell at N = 184. Here we report the synthesis of an isotope containing 114 protons and 173 neutrons, through fusion of intense beams of 48Ca ions with 242Pu targets. The isotope decays by α-emission with a half-life of about five seconds, providing experimental confirmation of the island of stability.
Nature | 2007
R. Eichler; N. V. Aksenov; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gäggeler; V. A. Gorshkov; F. Haenssler; M. G. Itkis; Andreas Laube; V. Ya. Lebedev; O. N. Malyshev; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; P. Rasmussen; S. V. Shishkin; A. V. Shutov; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin; M. Wegrzecki; A. V. Yeremin
The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of 283112 through the alpha decay of the short-lived 287114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of 283112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides.
Physics of Particles and Nuclei | 1998
M. G. Itkis; A. Ya. Rusanov
The various aspects of the formation of the fragment mass–energy distributions from the fission of excited nuclei in the range Z 2 /A=20–43 in heavy-ion reactions are reviewed. These are: the actual temperature of the fissioning nucleus after the emission of prefission particles, the effect of the angular momentum transferred to the nucleus by the incident ion, the static features of the formation of the fragment distributions of very light nuclei, the role and nature of dynamical effects in the descent of the nucleus from the saddle point to the scission point in the case of heavy nuclei, and the properties of quasi-fission. A fairly complete summary is given of both the experimental data on all these aspects and the theoretical understanding based on current ideas about the fission process.
Physics Letters B | 2003
M. S. Golovkov; Yu.Ts. Oganessian; D. D. Bogdanov; A. S. Fomichev; A. M. Rodin; S. I. Sidorchuk; R. S. Slepnev; S. V. Stepantsov; G. M. Ter-Akopian; R. Wolski; V. A. Gorshkov; M. L. Chelnokov; M. G. Itkis; E. M. Kozulin; A. A. Bogatchev; N. A. Kondratiev; I. V. Korzyukov; A. A. Yukhimchuk; V. V. Perevozchikov; Yu. I. Vinogradov; S. K. Grishechkin; A. M. Demin; S. V. Zlatoustovskiy; A. V. Kuryakin; S. V. Filchagin; R.I Il'kayev; F. Hanappe; T. Materna; L. Stuttge; A. Ninane
Resonance states of H-5 were investigated through the two-neutron transfer reaction t(t, P)(5) H. A triton beam at 57.5 MeV and a cryogenic liquid tritium target were used. The H-5 missing mass spectrum in triple coincidence, proton + triton + neutron, shows a resonance at 1.8 +/- 0.1 MeV above the t + 2n decay threshold. This energy is in good agreement with the result reported in Phys. Rev. Lett. 87 (2001) 092501. The resonance width, Gamma(intr) less than or equal to 0.5 MeV, is surprisingly small and difficult to reconcile with theory predictions
Nuclear Physics | 1989
M. G. Itkis; V. N. Okolovich; Georgi N. Smirenkin
Abstract Recent studies of the mass and energy distributions from fission of nuclei lighter than Ra at low and moderate energies are reviewed in order to inquire into problems related to the boundaries of the fission asymmetry, distinct fission modes, complexity of the fission fragment mass and energy distributions.
European Physical Journal A | 1985
M. G. Itkis; V. N. Okolovich; A. Ya. Rusanov; Georgi N. Smirenkin
The fragment mass and energy distributions have been measured for fission of213At,212Po,210Po,208Po,209Bi,207Bi,205Bi,204Pb and201Tl in (α, f) and (p, f) reactions. The yield of the asymmetric component has been found to decrease with decreasingZ andN of the fissile nucleus and vanish at201Tl. The analysis has shown the two main fission modes (symmetric and asymmetric) to be determined by the two distinct valleys in the deformation potential energy, which had been theoretically predicted by Pashkevich. The boundaries of validity of the hypothesis of two distinct fission modes have been estimated at 200 <A < 232 and 82 <Z < 92. The two-mode hypothesis is strongly substantiated in the paper.
Instruments and Experimental Techniques | 2008
E. M. Kozulin; A. A. Bogachev; M. G. Itkis; I. M. Itkis; G. N. Knyazheva; N. A. Kondratiev; Ľ. Krupa; I. V. Pokrovsky; E. V. Prokhorova
The CORSET time-of-flight spectrometer has been developed at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna, Russia) for investigating binary products of nuclear reactions. The spectrometer has been used to study the dynamics of fusion-fission and quasi-fission of superheavy elements. The design and the main characteristics of the spectrometer, as well as the algorithms for deducing the mass-energy distributions of fragments and the cross sections of nuclear reactions, are presented. The spectrometer contains two time-of-flight arms based on microchannel-plate detectors and three telescopes, each of which is composed of two microchannel-plate detectors and one semiconductor detector. A system of four semiconductor detectors is used to obtain the absolute value of a cross section. The time resolution of the time-of-flight arms is 150 ps, which allows the time-of-flight distances to be set at 10–20 cm, thus providing a mass resolution of 3 amu and an angular resolution of 0.3°. Owing to these characteristics, the spectrometer can be used as a trigger in multidetector setups for measuring light charged particles, neutrons, and γ rays in coincidence with reaction fragments.
Physics of Atomic Nuclei | 2003
V. I. Zagrebaev; M. G. Itkis; Yu. Ts. Oganessian
The paper is focused on reaction dynamics of superheavy-nucleus formation and decay at beam energies near the Coulomb barrier. The aim is to review the things we have learned from recent experiments on fusion-fission reactions leading to the formation of compound nuclei with Z≥102 and from their extensive theoretical analysis. Major attention is paid to the dynamics of formation of very heavy compound nuclei taking place in strong competition with the process of fast fission (quasifission). The choice of collective degrees of freedom playing a fundamental role and finding the multidimensional driving potential and the corresponding dynamic equation regulating the whole process are discussed. A possibility of deriving the fission barriers of superheavy nuclei directly from performed experiments is of particular interest here. In conclusion, the results of a detailed theoretical analysis of available experimental data on the “cold” and “hot” fusion-fission reactions are presented. Perspectives of future experiments are discussed along with additional theoretical studies in this field needed for deeper understanding of the fusion-fission processes of very heavy nuclear systems.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003
A. G. Popeko; O. N. Malyshev; A. V. Yeremin; A. V. Belozerov; M. L. Chelnokov; V. I. Chepigin; V. A. Gorshkov; M. G. Itkis; A. P. Kabachenko; Yu. Ts. Oganessian; R. N. Sagaidak; A. V. Shutov; A. I. Svirikhin
Within the past 15 years, the recoil separator VASSILISSA has been used for the investigations of evaporation residues produced in complete fusion reactions induced by heavy ions. The study of decay properties and formation of cross-sections of the isotopes of elements 110, 112 and 114 was performed using high-intensity Ca beams and Th; U; Pu targets. For further experiments aimed at the synthesis of the superheavy element isotopes ðZX110Þ with the use of intense Ca extracted beams, improvements in the ion optical system of the separator and the focal plane detector system have been made. The results from the test reactions and new results for the isotope 112 are presented. r 2003 Elsevier B.V. All rights reserved. PACS: 23.60.+e; 25.85.Ca; 29.30.Cm; 29.40.Pe
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2003
Yu. Ts. Oganessian; V.A. Shchepunov; S. N. Dmitriev; M. G. Itkis; G.G. Gulbekyan; M.V. Khabarov; V. V. Bekhterev; S. L. Bogomolov; A.A. Efremov; S.V. Pashenko; S. V. Stepantsov; A. V. Yeremin; Mikhail I. Yavor; A.G. Kalimov
Abstract A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10−3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.