M. G. Watson
University of Leicester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. G. Watson.
Nature | 2010
Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
Astronomy and Astrophysics | 2009
M. G. Watson; A. C. Schröder; D. Fyfe; C. G. Page; Georg Lamer; S. Mateos; J. P. Pye; Masaaki Sakano; S. R. Rosen; Jean Ballet; X. Barcons; D. Barret; Th. Boller; H. Brunner; M. Brusa; A. Caccianiga; Francisco J. Carrera; M. T. Ceballos; R. Della Ceca; Mark Denby; G. Denkinson; S. Dupuy; S. Farrell; F. Fraschetti; Michael J. Freyberg; P. Guillout; V. Hambaryan; T. Maccacaro; B. Mathiesen; Richard G. McMahon
Aims. Pointed observations with XMM-Newton provide the basis for creating catalogues of X-ray sources detected serendipitously in each field. This paper describes the creation and characteristics of the 2XMM catalogue. Methods. The 2XMM catalogue has been compiled from a new processing of the XMM-Newton EPIC camera data. The main features of the processing pipeline are described in detail. Results. The catalogue, the largest ever made at X-ray wavelengths, contains 246 897 detections drawn from 3491 public XMM-Newton observations over a 7-year interval, which relate to 191 870 unique sources. The catalogue fields cover a sky area of more than 500 deg(2). The non-overlapping sky area is similar to 360 deg(2) (similar to 1% of the sky) as many regions of the sky are observed more than once by XMM-Newton. The catalogue probes a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie and provides a major resource for generating large, well-defined X-ray selected source samples, studying the X-ray source population and identifying rare object types. The main characteristics of the catalogue are presented, including its photometric and astrometric properties
Astronomy and Astrophysics | 2001
G. Hasinger; B. Altieri; M. Arnaud; X. Barcons; Jacqueline Bergeron; H. Brunner; M. Dadina; K. Dennerl; P. Ferrando; Alexis Finoguenov; Richard E. Griffiths; Yasuhiro Hashimoto; F. Jansen; D. Lumb; K. O. Mason; S. Mateos; Richard G. McMahon; Takamitsu Miyaji; Frits Paerels; Mat Page; Af Ptak; Timothy P. Sasseen; N. Scharte; Gyula Pal Szokoly; J. Trümper; Martin J. L. Turner; R. S. Warwick; M. G. Watson
We report on the first deep X-ray survey with the XMM-Newton observatory during the performance verification phase. The field of the Lockman Hole, one of the best studied sky areas over a very wide range of wavelengths, has been observed. A total of ~100 ksec good exposure time has been accumulated. Combining the images of the European Photon Imaging Camera (EPIC) detectors we reach a flux limit of 0.31, 1.4 and
The Astrophysical Journal | 2014
Yoshihiro Ueda; Masayuki Akiyama; Guenther Hasinger; Takamitsu Miyaji; M. G. Watson
2.4 10^{-15} {\rm erg} {\rm cm}^{-2} {\rm s}^{-1}
Monthly Notices of the Royal Astronomical Society | 2006
Chris Simpson; Alejo Martinez-Sansigre; Steve Rawlings; R. J. Ivison; Masayuki Akiyama; Kazuhiro Sekiguchi; Tadafumi Takata; Yoshihiro Ueda; M. G. Watson
, respectively in the 0.5-2, 2-10, and 5-10 keV band. Within an off-axis angle of 10 arcmin we detect 148, 112 and 61 sources, respectively. The log( N )-log( S ) relation in the three bands is compared with previous results. In particular in the 5-10 keV band these observations present the deepest X-ray survey ever, about a factor 20 more sensitive than the previous BeppoSAX observations. Using X-ray spectral diagnostics and the set of previously known, spectroscopically identified ROSAT sources in the field, the new sources can be classified. XMM-Newton detects a significant number (~40% ) of X-ray sources with hard, probably intrinsically absorbed X-ray spectra, confirming a prediction of the population synthesis models for the X-ray background.
Monthly Notices of the Royal Astronomical Society | 2007
Michele Cirasuolo; Ross J. McLure; James Dunlop; Omar Almaini; S. Foucaud; Ian Smail; K. Sekiguchi; Chris Simpson; Stephen Anthony Eales; Simon Dye; M. G. Watson; M. J. Page; Paul Hirst
We present the most up-to-date X-ray luminosity function (XLF) and absorption function of Active Galactic Nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5--2 keV) and/or hard (
Nature | 2002
J. N. Reeves; D. Watson; Julian P. Osborne; K. A. Pounds; Paul T. O'Brien; A. Short; Martin J. L. Turner; M. G. Watson; K. O. Mason; M. Ehle; Norbert Schartel
>2
Monthly Notices of the Royal Astronomical Society | 2012
S. Mateos; A. Alonso-Herrero; Francisco J. Carrera; A. W. Blain; M. G. Watson; X. Barcons; V. Braito; P. Severgnini; J. L. Donley; D. Stern
keV) band. We utilize a maximum likelihood method to reproduce the count-rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broad band spectra of AGNs including reflection components from tori based on the luminosity and redshift dependent unified scheme. We find that the shape of the XLF at
Astronomy and Astrophysics | 2016
S. R. Rosen; Natalie A. Webb; M. G. Watson; J. Ballet; Didier Barret; V. Braito; Francisco J. Carrera; M. T. Ceballos; M. Coriat; R. Della Ceca; Grant W. Denkinson; P. Esquej; S. A. Farrell; Michael J. Freyberg; F. Grisé; P. Guillout; L. Heil; Filippos Koliopanos; D. Law-Green; Georg Lamer; Dacheng Lin; R. Martino; Laurent D. Michel; C. Motch; A. Nebot Gómez-Morán; C. G. Page; Kim L. Page; M. J. Page; Manfred W. Pakull; J. P. Pye
z \sim 1-3
arXiv: Astrophysics | 2002
J. N. Reeves; D. Watson; J. P. Osborne; K. A. Pounds; Paul T. O'Brien; A. Short; M. J. L. Turner; M. G. Watson; K. O. Mason; M. Ehle; N. Schartel
is significantly different from that in the local universe, for which the luminosity dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-Ray Background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be