Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Galán is active.

Publication


Featured researches published by M. Galán.


Thrombosis and Haemostasis | 2014

Lysyl oxidase (LOX) in vascular remodelling. Insight from a new animal model.

Mar Orriols; Anna Guadall; M. Galán; I. Martí-Pàmies; Saray Varona; Ricardo Rodríguez-Calvo; A.M. Briones; María A. Navarro; A. de Diego; Jesús Osada; José Martínez-González; Cristina Rodríguez

Lysyl oxidase (LOX) is an extracellular matrix-modifying enzyme that seems to play a critical role in vascular remodelling. However, the lack of viable LOX-deficient animal models has been an obstacle to deep in LOX biology. In this study we have developed a transgenic mouse model that over-expresses LOX in vascular smooth muscle cells (VSMC) to clarify whether LOX could regulate VSMC phenotype and vascular remodelling. The SM22α proximal promoter drove the expression of a transgene containing the human LOX cDNA. Two stable transgenic lines, phenotypically indistinguishable, were generated by conventional methods (TgLOX). Transgene expression followed the expected SMC-specific pattern. In TgLOX mice, real-time PCR and immunohistochemistry evidenced a strong expression of LOX in the media from aorta and carotid arteries, coincident with a higher proportion of mature collagen. VSMC isolated from TgLOX mice expressed high levels of LOX pro-enzyme, which was properly secreted and processed into mature and bioactive LOX. Interestingly, cell proliferation was significantly reduced in cells from TgLOX mice. Transgenic VSMC also exhibited low levels of Myh10 (marker of SMC phenotypic switching), PCNA (marker of cell proliferation) and MCP-1, and a weak activation of Akt and ERK1/2 in response to mitogenic stimuli. Accordingly, neointimal thickening induced by carotid artery ligation was attenuated in TgLOX mice that also displayed a reduction in PCNA and MCP-1 immunostaining. Our results give evidence that LOX plays a critical role in vascular remodelling. We have developed a new animal model to study the role of LOX in vascular biology.


Journal of Molecular and Cellular Cardiology | 2016

The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats

Ernesto Martínez-Martínez; Cristina Rodríguez; M. Galán; María Miana; Raquel Jurado-López; Maria Visitación Bartolomé; María Luaces; Fabián Islas; José Martínez-González; Natalia López-Andrés; Victoria Cachofeiro

Lysyl oxidase (LOX) is an extracellular matrix (ECM)-modifying enzyme that has been involved in cardiovascular remodeling. We explore the impact of LOX inhibition in ECM alterations induced by obesity in the cardiovascular system. LOX is overexpressed in the heart and aorta from rats fed a high-fat diet (HFD). β-Aminopropionitrile (BAPN), an inhibitor of LOX activity, significantly attenuated the increase in body weight and cardiac hypertrophy observed in HFD rats. No significant differences were found in cardiac function or blood pressure among any group. However, HFD rats showed cardiac and vascular fibrosis and enhanced levels of superoxide anion (O2(-)), collagen I and transforming growth factor β (TGF-β) in heart and aorta and connective tissue growth factor (CTGF) in aorta, effects that were attenuated by LOX inhibition. Interestingly, BAPN also prevented the increase in circulating leptin levels detected in HFD fed animals. Leptin increased protein levels of collagen I, TGF-β and CTGF, Akt phosphorylation and O2(-) production in both cardiac myofibroblasts and vascular smooth muscle cells in culture, while LOX inhibition ameliorated these alterations. LOX knockdown also attenuated leptin-induced collagen I production in cardiovascular cells. Our findings indicate that LOX inhibition attenuates the fibrosis and the oxidative stress induced by a HFD on the cardiovascular system. The reduction of leptin levels by BAPN in vivo and the ability of this compound to inhibit leptin-induced profibrotic mediators and ROS production in cardiac and vascular cells suggest that interactions between leptin and LOX regulate downstream events responsible for myocardial and vascular fibrosis in obesity.


Disease Models & Mechanisms | 2015

The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats

María Miana; M. Galán; Ernesto Martínez-Martínez; Saray Varona; Raquel Jurado-López; Belén Bausa-Miranda; Alfonso Antequera; María Luaces; José Martínez-González; Cristina Rodríguez; Victoria Cachofeiro

ABSTRACT Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for the clinical management of this disease. Highlighted Article: Lysyl oxidase (LOX) could play a role in the metabolic dysfunction induced by obesity, and consequently the inhibition of LOX activity could be a valuable strategy to ameliorate obesity-related metabolic disturbances.


Cardiovascular Research | 2016

Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics

Mar Orriols; Saray Varona; Ingrid Martí-Pàmies; M. Galán; Anna Guadall; José Román Escudero; José Luis Martín-Ventura; Mercedes Camacho; Luis M. Vilá; José Martínez-González; Cristina Rodríguez

AIMS Destructive remodelling of extracellular matrix (ECM) and inflammation lead to dilation and ultimately abdominal aortic aneurysm (AAA). Fibulin-5 (FBLN5) mediates cell-ECM interactions and elastic fibre assembly and is critical for ECM remodelling. We aimed to characterize FBLN5 regulation in human AAA and analyse the underlying mechanisms. METHODS AND RESULTS FBLN5 expression was significantly decreased in human aneurysmatic aortas compared with healthy vessels. Local FBLN5 knockdown promoted aortic dilation and enhanced vascular expression of inflammatory markers in Ang II-infused C57BL/6J mice. Inflammatory stimuli down-regulated FBLN5 expression and transcriptional activity in human aortic vascular smooth muscle cells (VSMC). Further, aortic FBLN5 expression was reduced in LPS-challenged mice. A SOX response element was critical for FBLN5 promoter activity. The SOX9 expression pattern in human AAA parallels that of FBLN5, and like FBLN5, it was reduced in TNFα-stimulated VSMC. Interestingly, SOX9 over-expression prevented the cytokine-mediated reduction of FBLN5 expression and transcription. The inhibition of Class I histone deacetylases (HDACs) by MS-275 or gene silencing attenuated the inflammation-mediated decrease of FBLN5 expression in VSMC and in the vascular wall. Consistently, HDAC inhibition counteracted the reduction of SOX9 expression induced by inflammatory stimuli and prevented the TNFα-mediated decrease in the binding of SOX9 to FBLN5 promoter normalizing FBLN5 expression. CONCLUSION We evidence the deregulation of FBLN5 in human AAA and identify a SOX9/HDAC-dependent mechanism involved in the down-regulation of FBLN5 by inflammation. HDAC inhibitors or pharmacological approaches that aimed to preserve FBLN5 could be useful to prevent the disorganization of ECM induced by inflammation in AAA.


Disease Models & Mechanisms | 2016

Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors

M. Galán; Saray Varona; Mar Orriols; José Antonio Piqueras Rodríguez; Silvia Aguiló; Jaume Dilmé; Mercedes Camacho; José Martínez-González; Cristina Rodríguez

ABSTRACT Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE−/−) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE−/− mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. Summary: This study reports the upregulation of HDACs in human AAA, evidences that HDAC inhibitors limit aneurysm progression in a preclinical model and suggests the therapeutic interest of HDAC inhibition in AAA.


Journal of Hypertension | 2011

Angiotensin II differentially modulates cyclooxygenase-2, microsomal prostaglandin E2 synthase-1 and prostaglandin I2 synthase expression in adventitial fibroblasts exposed to inflammatory stimuli.

M. Galán; Marta Miguel; Amada E Beltrán; Cristina Rodríguez; Ana B. García-Redondo; Ricardo Rodríguez-Calvo; María J. Alonso; José Martínez-González; Mercedes Salaices

Aims To assess whether angiotensin II (Ang II) modulates key enzymes of the cyclooxygenase (COX)-2/prostanoid pathway, including prostaglandin E synthase-1 (mPGES-1) and prostacyclin synthase (PGIS) in rat aortic adventitial fibroblasts in the presence or absence of an inflammatory stimulus [interleukin (IL)-1β]. Methods and results Fibroblasts stimulated with IL-1β (10 ng/ml, 24 h) and/or Ang II (0.1 μmol/l, 24 h) were used. IL-1β up-regulated COX-2 and mPGES-1 (protein and mRNA) and increased PGI2 and PGE2 release, without altering PGIS protein expression. Ang II did modify neither COX-2 and mPGES-1 expression nor prostanoid levels, but it induced PGIS expression. Interestingly, Ang II further enhanced IL-1β-induced COX-2 expression and PGI2 release and concomitantly reduced IL-1β-induced mPGES-1 expression. The AT1 receptor antagonist losartan prevented the effects of Ang II on IL-1β-induced COX-2 or mPGES-1 expression. IL-1β activated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2 pathways, and coincubation with Ang II resulted in a higher and more sustained phosphorylation of both MAPK. Inhibition of either p38 MAPK (SB203580) or ERK1/2 (PD98059) reduced COX-2 and mPGES-1 expression in cells treated with IL-1β or the combination of IL-1β and Ang II. Ang II did not modify COX-2 transcriptional activity but increased COX-2 mRNA stability in IL-1β-treated cells; by contrast, it increased PGIS mRNA levels through a transcriptional mechanism. Conclusion Ang II differentially modulates key enzymes involved in prostanoid biosynthesis thereby altering the balance between PGI2/PGE2 in vascular cells exposed to inflammatory stimuli.


Scientific Reports | 2016

NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: role in the survival response to hypoxic stress.

Judith Alonso; M. Galán; Ingrid Martí-Pàmies; José María Romero; Mercedes Camacho; Cristina Rodríguez; José Martínez-González

Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells.


Archive | 2012

Sulfonamide Antibiotics in Natural and Treated Waters: Environmental and Human Health Risks

M. Galán; M. Silvia Díaz-Cruz; Damià Barceló

Concern regarding the environmental presence of sulfonamides and other species of antibiotics has focused mainly on the potential spread of antimicrobial resistance. However, their biological activity and high resistance to biodegradation may lead to long residence times in both water and soil matrices. Treated waters represent one of the main entrance pathways of these antimicrobials into the environment, and their potential impact in the aquatic ecosystems should be fully understood and investigated. Long-term ecological risks and unpredicted effects can result from unintentional exposure of different organisms and even human health could be negatively affected. This chapter aims to review the current knowlegde regarding sulfonamides ecotoxicity and to highlight the need for further data on the fate and ecotoxicity fo this family of antibiotics.


Journal of Hypertension | 2016

T-regulatory cells and vascular function: the importance of their immunosuppressive action in hypertensive disease

M. Galán; Mercedes Salaices

MG is supported by the Sara Borrell Program (CD12/00589). MS and MG have received research grants from MINECO (SAF2012-36400) and from ISCIII (RD12/0042/0024) and (RD12/0042/0053).


Clínica e Investigación en Arteriosclerosis | 2016

La inflamación inhibe la expresión vascular de la fibulina-5: implicación del factor de transcripción SOX9 ☆

Mar Orriols; Saray Varona; Silvia Aguiló; M. Galán; José Martínez González; Cristina Rodríguez

INTRODUCTION Fibulin-5 (FBLN5) is an elastogenic protein critically involved in extracellular matrix (ECM) remodelling, a key process in abdominal aortic aneurysm (AAA). However, the possible contribution of FBLN5 to AAA development has not been addressed. METHODS Expression levels were determined by real-time PCR and Western blot in human abdominal aorta from patients with AAA or healthy donors, as well as in human aortic vascular smooth muscle cells (VSMC). Lentiviral transduction, transient transfections, and chromatin immunoprecipitation (ChIP) assays were also performed. RESULTS The expression of FBLN5 in human AAA was significantly lower than in healthy donors. FBLN5 mRNA and protein levels and their secretion to the extracellular environment were down-regulated in VSMC exposed to inflammatory stimuli. Interestingly, FBLN5 transcriptional activity was inhibited by TNFα and lipopolysaccharide (LPS), and depends on a SOX response element. In fact, SOX9 expression was reduced in VMSC induced by inflammatory mediators and in human AAA, and correlated with that of FBLN5. Furthermore, SOX9 over-expression limited the reduction of FBLN5 expression induced by cytokines in VSMC. Finally, it was observed that SOX9 interacts with FBLN5 promoter, and that this binding was reduced upon TNFα exposure. CONCLUSIONS FBLN5 downregulation in human AAA could contribute to extracellular matrix remodelling induced by the inflammatory component of the disease.

Collaboration


Dive into the M. Galán's collaboration.

Top Co-Authors

Avatar

Cristina Rodríguez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saray Varona

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mar Orriols

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anna Guadall

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mercedes Salaices

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid Martí-Pàmies

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Miguel

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge