M. Gauss
Norwegian Meteorological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Gauss.
Journal of Geophysical Research | 2006
David S. Stevenson; F. Dentener; Martin G. Schultz; K. Ellingsen; T. van Noije; Oliver Wild; Guang Zeng; M. Amann; C. S. Atherton; N. Bell; D. Bergmann; Isabelle Bey; T. Butler; J. Cofala; W. J. Collins; R. G. Derwent; Ruth M. Doherty; J. Drevet; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; M. Krol; Jean-Francois Lamarque; M. G. Lawrence; V. Montanaro; Jean-François Müller; G. Pitari
Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing optimistic, likely, and pessimistic options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO 2 forcing over the same time period of 800-1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000 and 550 Tg(O 3 ) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O 3 )) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each models ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprenes degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations. Copyright 2006 by the American Geophysical Union.
Global Biogeochemical Cycles | 2006
Frank Dentener; J. Drevet; Jean-Francois Lamarque; Isabelle Bey; B. Eickhout; Arlene M. Fiore; D. A. Hauglustaine; Larry W. Horowitz; M. Krol; U. C. Kulshrestha; M. G. Lawrence; C. Galy-Lacaux; Sebastian Rast; Drew T. Shindell; David S. Stevenson; T. van Noije; C. S. Atherton; N. Bell; D. Bergman; T. Butler; J. Cofala; B. Collins; Ruth M. Doherty; K. Ellingsen; James N. Galloway; M. Gauss; V. Montanaro; J.-F. Müller; G. Pitari; Jose M. Rodriguez
We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60–70% of the model-calculated wet deposition rates agree to within ±50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to ±1 σ variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36–51% of all NOy, NHx, and SOx is deposited over the ocean, and 50–80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the worlds natural vegetation receives nitrogen deposition in excess of the “critical load” threshold of 1000 mg(N) m−2 yr−1. The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia (40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m−2 yr−1 increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.
Journal of Geophysical Research | 2003
M. Gauss; Gunnar Myhre; G. Pitari; Michael J. Prather; Ivar S. A. Isaksen; Terje K. Berntsen; Guy P. Brasseur; F. Dentener; R. G. Derwent; D. A. Hauglustaine; Larry W. Horowitz; Daniel J. Jacob; M. Johnson; Kathy S. Law; Loretta J. Mickley; J.-F. Müller; P.-H. Plantevin; J. A. Pyle; Helen Rogers; David S. Stevenson; Jostein K. Sundet; M. van Weele; Oliver Wild
ranging from 0.40 to 0.78 W m 2 on a global and annual average. The lower stratosphere contributes an additional 7.5–9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15–0.17 W m 2 . The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change. INDEX TERMS: 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0341 Atmospheric Composition and Structure: Middle atmosphere—constituent transport and chemistry (3334) Citation: Gauss, M., et al., Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere, J. Geophys. Res., 108(D9), 4292, doi:10.1029/2002JD002624, 2003.
Journal of Geophysical Research | 2006
Drew T. Shindell; G. Faluvegi; David S. Stevenson; M. Krol; Louisa Kent Emmons; Jean-Francois Lamarque; G. Pétron; F. Dentener; K. Ellingsen; Martin G. Schultz; Oliver Wild; M. Amann; C. S. Atherton; D. Bergmann; I. Bey; T. Butler; J. Cofala; W. J. Collins; R. G. Derwent; Ruth M. Doherty; J. Drevet; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; M. G. Lawrence; V. Montanaro; Jean-François Müller
We analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year-round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south-central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 ± 3.5 ppbv (16%) for the high-emissions (A2) scenario, by 1.7 ± 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 ± 2.3 ppbv (11%) for the low-emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 ± 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10–20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year-round under A2, with the largest changes over central Africa (20–30 ppbv), southern Brazil (20–35 ppbv) and south and east Asia (30–70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the worlds populated areas.
Geophysical Research Letters | 2003
Michael J. Prather; M. Gauss; Terje K. Berntsen; Ivar S. A. Isaksen; Jostein K. Sundet; Isabelle Bey; Guy P. Brasseur; Frank Dentener; R. G. Derwent; David S. Stevenson; Lee Grenfell; D. A. Hauglustaine; Larry W. Horowitz; Daniel J. Jacob; Loretta J. Mickley; Mark G. Lawrence; Rolf von Kuhlmann; Jean-François Müller; Giovanni Pitari; Helen Rogers; Matthew S. Johnson; J. A. Pyle; Kathy S. Law; Michiel van Weele; Oliver Wild
Ozone is an air quality problem today for much of the worlds population. Regions can exceed the ozone air quality standards (AQS) through a combination of local emissions, meteorology favoring pollution episodes, and the clean-air baseline levels of ozone upon which pollution builds. The IPCC 2001 assessment studied a range of global emission scenarios and found that all but one projects increases in global tropospheric ozone during the 21st century. By 2030, near-surface increases over much of the northern hemisphere are estimated to be about 5 ppb (+2 to +7 ppb over the range of scenarios). By 2100 the two more extreme scenarios project baseline ozone increases of >20 ppb, while the other four scenarios give changes of -4 to +10 ppb. Even modest increases in the background abundance of tropospheric ozone might defeat current AQS strategies. The larger increases, however, would gravely threaten both urban and rural air quality over most of the northern hemisphere.
Global Biogeochemical Cycles | 2011
Ivar S. A. Isaksen; M. Gauss; Gunnar Myhre; Katey M. Walter Anthony; Carolyn D. Ruppel
[1] The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.
Environmental Sciences | 2005
M. De Mazière; A. Rockmann; Corinne Vigouroux; Tom Gardiner; M. Coleman; P. T. Woods; K. Ellingsen; M. Gauss; Ivar S. A. Isaksen; Thomas Blumenstock; F. Hase; I. Kramer; C. Camy-Peyret; P. Chelin; Emmanuel Mahieu; Philippe Demoulin; Pierre Duchatelet; Johan Mellqvist; A. Strandberg; V. Velazco; Justus Notholt; Ralf Sussmann; Wolfgang Stremme
Abstract Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including non-CO2 greenhouse gases. Such observations have regularly been made for many years as a contribution to the Network for the Detection of Stratospheric Change (NDSC). They are the only ground-based remote sensing observations available nowadays that carry information about a number of greenhouse gases in the free troposphere. This work focuses on the discussion of the information content of FTIR long-term monitoring data of some direct and indirect greenhouse gases (CH4, N2O, O3 and CO and C2H6, respectively), at six NDSC stations in Western Europe. This European FTIR network covers the polar to subtropical regions. At several stations of the network, the observations span more than a decade. Existing spectral time series have been reanalyzed according to a common optimized retrieval strategy, in order to derive distinct tropospheric and stratospheric abundances for the above-mentioned target gases. A bootstrap resampling method has been implemented to evaluate trends of the tropospheric burdens of the target gases, including their uncertainties. In parallel, simulations of the target time series are being made with the Oslo CTM2 model: comparisons between the model results and the observations provide valuable information to improve the model and, in particular, to optimize emission estimates that are used as inputs to the model simulations. The work is being performed within the EC project UFTIR. The paper focuses on N2O for which the first trend results have been obtained.
Meteorologische Zeitschrift | 2002
Niels Bent Larsen; Bjørn M. Knudsen; M. Gauss; Giovanni Pitari
Stratospheric chemical transport models (CTM) have been used to calculate perturbations in HNO 3 and H 2 O due to stratospheric supersonic aircraft emissions of nitrogen oxides and water vapour. The perturbations were used as input to a detailed microphysical model to study the effects on Arctic polar stratospheric cloud (PSC) formation. Actual winter 1989/90 temperature histories from domain filling trajectories were used to calculate PSC particle types and surface areas, allowing the inherent temperature hysteresis in the life cycles of different PSC particle types to be taken into account. Increased concentrations of water vapour, caused by stratospheric aircraft emissions, imply higher freezing temperatures for ice in supercooled ternary solution liquid type PSC particles, required for the formation of solid type PSCs. A potential exists that the enhanced H 2 O concentrations may lead to more solid type PSC formation and thereby more widespread denitrification.
Archive | 2016
G. Lacressonnière; Laura Watson; Magnuz Engardt; M. Gauss; Camilla Andersson; Matthias Beekmann; Augustin Colette; Gilles Foret; B. Josse; Virginie Marécal; Agnes Nyiri; Guillaume Siour; Stefan Sobolowski; Robert Vautard
In the context of the IMPACT2C project, one of the objectives is to estimate the pan-European impacts of a global 2-degree increase in temperature on human health, including change in air pollution. Climate change will affect atmospheric dispersion, biogenic and fire emissions, chemistry, and the frequency of extreme weather situations such as heat waves. These changes will have an impact on air quality with subsequent health consequences that must be evaluated. In order to evaluate how climate change will potentially affect the efficiency of emission abatement policies and how this will potentially affect health, several simulations have been conducted using different chemistry-transport models (CTMs): CHIMERE (IPSL), EMEP MSC-W (MET.NO), MATCH (SMHI), and MOCAGE (Meteo-France). The use of four CTMs provide an estimate of the uncertainty in projections with the spread between models and driving meteorological data. To compare with future climate, the first step is to perform air quality simulations for the current climate: HINDCAST (CTMs forced by reanalysis boundary forcing ERA Interim) and HISTORICAL (global climate model boundary forcings). The comparisons between HINDCAST and HISTORICAL simulations allow to evaluate how global climate models modify climate hindcasts by boundary conditions inputs. In this study, we focus on particulate matter (PM10 and PM2.5) and its chemical composition. We first analyze whether the chemical composition of PM is affected by the use of climate models. We then investigate the contributions of the changes in meteorological parameters (frequency of precipitation, 2-m temperature, etc.) as well as emissions and depositions processes on surface PM. These results are the basis for analyzing future 2° warming climates. Under the RCP4.5 scenario, simulations have been performed in order to calculate the effect of climate change on emission reduction scenarios, the climate penalty, as well as the effect of emission mitigation. This analysis also provide uncertainties associated to future AQ projections.
Archive | 2000
M. Gauss; Ivar S. A. Isaksen
The impact of future aircraft emissions on concentrations of reactive nitrogen, water vapour and ozone has been calculated using the 3-dimensional stratospheric chemical transport model SCTM-1. Emissions of NOx (NO+NO2) and H2O from both sub-and supersonic aircraft have been considered.