Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Gordon Joyce is active.

Publication


Featured researches published by M. Gordon Joyce.


Nature | 2013

Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus

Hua-Xin Liao; Rebecca M. Lynch; Tongqing Zhou; Feng Gao; S. Munir Alam; Scott D. Boyd; Andrew Fire; Krishna M. Roskin; Chaim A. Schramm; Z. F. Zhang; Jiang Zhu; Lawrence Shapiro; Nisc Comparative Sequencing Program; James C. Mullikin; S. Gnanakaran; Peter Hraber; Kevin Wiehe; Garnett Kelsoe; Guang Yang; Shi-Mao Xia; David C. Montefiori; Robert Parks; Krissey E. Lloyd; Richard M. Scearce; Kelly A. Soderberg; Myron S. Cohen; Gift Kamanga; Mark K. Louder; Lillian Tran; Yue Chen

Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.


Science | 2013

Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus.

Jason S. McLellan; Man Chen; M. Gordon Joyce; Mallika Sastry; Guillaume Stewart-Jones; Yongping Yang; Baoshan Zhang; Lei Chen; Sanjay Srivatsan; Anqi Zheng; Tongqing Zhou; Kevin W. Graepel; Azad Kumar; Syed M. Moin; Jeffrey C. Boyington; Gwo Yu Chuang; Cinque Soto; Ulrich Baxa; Arjen Q. Bakker; Hergen Spits; Tim Beaumont; Zi-Zheng Zheng; Ningshao Xia; Sung Youl Ko; John Paul Todd; Srinivas S. Rao; Barney S. Graham; Peter D. Kwong

Designer Vaccine Respiratory syncytial virus (RSV) is one of the last remaining childhood diseases without an approved vaccine. Using a structure-based approach, McLellan et al. (p. 592) designed over 150 fusion glycoprotein variants, assessed their antibody reactivity, determined crystal structures of stabilized variants, and measured their ability to elicit protective responses. This approach yielded an immunogen that elicits higher protective responses than the postfusion form of the fusion glycoprotein, which is one of the current leading RSV vaccine candidates entering clinical trials. Importantly, highly protective responses were elicited in both mice and macaques. Molecular engineering of a childhood virus surface protein significantly improves protective responses in mice and macaques. Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site Ø, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site Ø when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site Ø–stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.


Nature Medicine | 2015

Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection

Hadi M. Yassine; Jeffrey C. Boyington; Patrick McTamney; Chih Jen Wei; Masaru Kanekiyo; Wing Pui Kong; John R. Gallagher; Lingshu Wang; Yi Zhang; M. Gordon Joyce; Daniel Lingwood; Syed M. Moin; Hanne Andersen; Yoshinobu Okuno; Srinivas S. Rao; Audray K. Harris; Peter D. Kwong; John R. Mascola; Gary J. Nabel; Barney S. Graham

The antibody response to influenza is primarily focused on the head region of the hemagglutinin (HA) glycoprotein, which in turn undergoes antigenic drift, thus necessitating annual updates of influenza vaccines. In contrast, the immunogenically subdominant stem region of HA is highly conserved and recognized by antibodies capable of binding multiple HA subtypes. Here we report the structure-based development of an H1 HA stem–only immunogen that confers heterosubtypic protection in mice and ferrets. Six iterative cycles of structure-based design (Gen1–Gen6) yielded successive H1 HA stabilized-stem (HA–SS) immunogens that lack the immunodominant head domain. Antigenic characterization, determination of two HA–SS crystal structures in complex with stem-specific monoclonal antibodies and cryo-electron microscopy analysis of HA–SS on ferritin nanoparticles (H1–SS–np) confirmed the preservation of key structural elements. Vaccination of mice and ferrets with H1–SS–np elicited broadly cross-reactive antibodies that completely protected mice and partially protected ferrets against lethal heterosubtypic H5N1 influenza virus challenge despite the absence of detectable H5N1 neutralizing activity in vitro. Passive transfer of immunoglobulin from H1–SS–np–immunized mice to naive mice conferred protection against H5N1 challenge, indicating that vaccine-elicited HA stem–specific antibodies can protect against diverse group 1 influenza strains.


Immunity | 2013

Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies.

Tongqing Zhou; Jiang Zhu; Xueling Wu; Stephanie Moquin; Baoshan Zhang; Priyamvada Acharya; Ivelin S. Georgiev; Han R. Altae-Tran; Gwo-Yu Chuang; M. Gordon Joyce; Young Do Kwon; Nancy S. Longo; Mark K. Louder; Timothy S. Luongo; Krisha McKee; Chaim A. Schramm; Jeff Skinner; Yongping Yang; Zhongjia Yang; Z. F. Zhang; Anqi Zheng; Mattia Bonsignori; Barton F. Haynes; Johannes F. Scheid; Michel C. Nussenzweig; Melissa Simek; Dennis R. Burton; Wayne C. Koff; James C. Mullikin; Mark Connors

Antibodies of the VRC01 class neutralize HIV-1, arise in diverse HIV-1-infected donors, and are potential templates for an effective HIV-1 vaccine. However, the stochastic processes that generate repertoires in each individual of >10(12) antibodies make elicitation of specific antibodies uncertain. Here we determine the ontogeny of the VRC01 class by crystallography and next-generation sequencing. Despite antibody-sequence differences exceeding 50%, antibody-gp120 cocrystal structures reveal VRC01-class recognition to be remarkably similar. B cell transcripts indicate that VRC01-class antibodies require few specific genetic elements, suggesting that naive-B cells with VRC01-class features are generated regularly by recombination. Virtually all of these fail to mature, however, with only a few-likely one-ancestor B cell expanding to form a VRC01-class lineage in each donor. Developmental similarities in multiple donors thus reveal the generation of VRC01-class antibodies to be reproducible in principle, thereby providing a framework for attempts to elicit similar antibodies in the general population.


Nature Structural & Molecular Biology | 2015

Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

Young Do Kwon; Marie Pancera; Priyamvada Acharya; Ivelin S. Georgiev; Emma T. Crooks; Jason Gorman; M. Gordon Joyce; Xiaochu Ma; Sandeep Narpala; Cinque Soto; Daniel S. Terry; Yongping Yang; Tongqing Zhou; Goran Ahlsen; Robert T. Bailer; Michael Chambers; Gwo Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Mark A. Hallen; Adam Harned; Tatsiana Kirys; Mark K. Louder; Sijy O'Dell; Gilad Ofek; Keiko Osawa; Madhu Prabhakaran; Mallika Sastry; Guillaume Stewart-Jones; Jonathan Stuckey

As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.


Nature | 2014

Enhanced neonatal Fc receptor function improves protection against primate SHIV infection

Sung Youl Ko; Amarendra Pegu; Rebecca S. Rudicell; Zhi Yong Yang; M. Gordon Joyce; Xuejun Chen; Saran Bao; Thomas D. Kraemer; Timo Rath; Ming Zeng; Stephen D. Schmidt; John Paul Todd; Scott R. Penzak; Kevin O. Saunders; Martha Nason; Ashley T. Haase; Srinivas S. Rao; Richard S. Blumberg; John R. Mascola; Gary J. Nabel

To protect against human immunodeficiency virus (HIV-1) infection, broadly neutralizing antibodies (bnAbs) must be active at the portals of viral entry in the gastrointestinal or cervicovaginal tracts. The localization and persistence of antibodies at these sites is influenced by the neonatal Fc receptor (FcRn), whose role in protecting against infection in vivo has not been defined. Here, we show that a bnAb with enhanced FcRn binding has increased gut mucosal tissue localization, which improves protection against lentiviral infection in non-human primates. A bnAb directed to the CD4-binding site of the HIV-1 envelope (Env) protein (denoted VRC01) was modified by site-directed mutagenesis to increase its binding affinity for FcRn. This enhanced FcRn-binding mutant bnAb, denoted VRC01-LS, displayed increased transcytosis across human FcRn-expressing cellular monolayers in vitro while retaining FcγRIIIa binding and function, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, at levels similar to VRC01 (the wild type). VRC01-LS had a threefold longer serum half-life than VRC01 in non-human primates and persisted in the rectal mucosa even when it was no longer detectable in the serum. Notably, VRC01-LS mediated protection superior to that afforded by VRC01 against intrarectal infection with simian–human immunodeficiency virus (SHIV). These findings suggest that modification of FcRn binding provides a mechanism not only to increase serum half-life but also to enhance mucosal localization that confers immune protection. Mutations that enhance FcRn function could therefore increase the potency and durability of passive immunization strategies to prevent HIV-1 infection.


Cell | 2015

Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors.

Tongqing Zhou; Rebecca M. Lynch; Lei Chen; Priyamvada Acharya; Xueling Wu; Nicole A. Doria-Rose; M. Gordon Joyce; Daniel Lingwood; Cinque Soto; Robert T. Bailer; Michael J. Ernandes; Rui Kong; Nancy S. Longo; Mark K. Louder; Krisha McKee; Sijy O’Dell; Stephen D. Schmidt; Lillian Tran; Zhongjia Yang; Aliaksandr Druz; Timothy S. Luongo; Stephanie Moquin; Sanjay Srivatsan; Yongping Yang; Baoshan Zhang; Anqi Zheng; Marie Pancera; Tatsiana Kirys; Ivelin S. Georgiev; Tatyana Gindin

The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.


Cell | 2016

Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody

Mattia Bonsignori; Tongqing Zhou; Zizhang Sheng; Lei Chen; Feng Gao; M. Gordon Joyce; Gabriel Ozorowski; Gwo-Yu Chuang; Chaim A. Schramm; Kevin Wiehe; S. Munir Alam; Todd Bradley; Morgan A. Gladden; Kwan-Ki Hwang; Sheelah Iyengar; Amit Kumar; Xiaozhi Lu; Kan Luo; Michael C. Mangiapani; Robert Parks; Hongshuo Song; Priyamvada Acharya; Robert T. Bailer; Allen Cao; Aliaksandr Druz; Ivelin S. Georgiev; Young Do Kwon; Mark K. Louder; Baoshan Zhang; Anqi Zheng

Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.


Cell | 2015

Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection

Xueling Wu; Z. F. Zhang; Chaim A. Schramm; M. Gordon Joyce; Young Do Kwon; Tongqing Zhou; Zizhang Sheng; Baoshan Zhang; Sijy O’Dell; Krisha McKee; Ivelin S. Georgiev; Gwo-Yu Chuang; Nancy S. Longo; Rebecca M. Lynch; Kevin O. Saunders; Cinque Soto; Sanjay Srivatsan; Yongping Yang; Robert T. Bailer; Mark K. Louder; Betty Benjamin; Robert W. Blakesley; Gerry Bouffard; Shelise Brooks; Holly Coleman; Mila Dekhtyar; Michael Gregory; Xiaobin Guan; Jyoti Gupta; Joel Han

HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.


Science Translational Medicine | 2015

Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera

Joan O. Ngwuta; Man Chen; Kayvon Modjarrad; M. Gordon Joyce; Masaru Kanekiyo; Azad Kumar; Hadi M. Yassine; Syed M. Moin; April M. Killikelly; Gwo-Yu Chuang; Aliaksandr Druz; Ivelin S. Georgiev; Emily Rundlet; Mallika Sastry; Guillaume Stewart-Jones; Yongping Yang; Baoshan Zhang; Martha Nason; Cristina Capella; Mark E. Peeples; Julie E. Ledgerwood; Jason S. McLellan; Peter D. Kwong; Barney S. Graham

Antibodies to the prefusion conformation of the RSV F glycoprotein neutralize natural infection. Neutralizing RSV Respiratory syncytial virus (RSV) infection causes cold-like symptoms in healthy adults but may be deadly in infants and other high-risk populations. However, no vaccine is currently available for RSV. Ngwuta et al. report that antibodies against an antigen site found in the RSV fusion glycoprotein (F) constitute most of the neutralizing antibody response in infected individuals. This site is found in the prefusion but not the postfusion form of the glycoprotein, suggesting that vaccines should be targeted to the prefusion version of this protein. Respiratory syncytial virus (RSV) is estimated to claim more lives among infants <1 year old than any other single pathogen, except malaria, and poses a substantial global health burden. Viral entry is mediated by a type I fusion glycoprotein (F) that transitions from a metastable prefusion (pre-F) to a stable postfusion (post-F) trimer. A highly neutralization-sensitive epitope, antigenic site Ø, is found only on pre-F. We determined what fraction of neutralizing (NT) activity in human sera is dependent on antibodies specific for antigenic site Ø or other antigenic sites on F in healthy subjects from ages 7 to 93 years. Adsorption of individual sera with stabilized pre-F protein removed >90% of NT activity and depleted binding antibodies to both F conformations. In contrast, adsorption with post-F removed ~30% of NT activity, and binding antibodies to pre-F were retained. These findings were consistent across all age groups. Protein competition neutralization assays with pre-F mutants in which sites Ø or II were altered to knock out binding of antibodies to the corresponding sites showed that these sites accounted for ~35 and <10% of NT activity, respectively. Binding competition assays with monoclonal antibodies (mAbs) indicated that the amount of site Ø–specific antibodies correlated with NT activity, whereas the magnitude of binding competed by site II mAbs did not correlate with neutralization. Our results indicate that RSV NT activity in human sera is primarily derived from pre-F–specific antibodies, and therefore, inducing or boosting NT activity by vaccination will be facilitated by using pre-F antigens that preserve site Ø.

Collaboration


Dive into the M. Gordon Joyce's collaboration.

Top Co-Authors

Avatar

Ivelin S. Georgiev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter D. Kwong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Baoshan Zhang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aliaksandr Druz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tongqing Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yongping Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gwo-Yu Chuang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cinque Soto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge