M. Graça H. Vicente
Louisiana State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Graça H. Vicente.
Clinical Cancer Research | 2005
Rolf F. Barth; Jeffrey A. Coderre; M. Graça H. Vicente; Thomas E. Blue
Background: Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer α particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most recently, head and neck and liver cancer. Neutron sources for BNCT currently are limited to nuclear reactors and these are available in the United States, Japan, several European countries, and Argentina. Accelerators also can be used to produce epithermal neutrons and these are being developed in several countries, but none are currently being used for BNCT. Boron Delivery Agents: Two boron drugs have been used clinically, sodium borocaptate (Na2B12H11SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The major challenge in the development of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations (∼20 μg/g tumor) sufficient to deliver therapeutic doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other classes of boron-containing compounds have been designed and synthesized that include boron-containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and porphyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and liposomes. However, it is unlikely that any single agent will target all or even most of the tumor cells, and most likely, combinations of agents will be required and their delivery will have to be optimized. Clinical Trials: Current or recently completed clinical trials have been carried out in Japan, Europe, and the United States. The vast majority of patients have had high-grade gliomas. Treatment has consisted first of “debulking” surgery to remove as much of the tumor as possible, followed by BNCT at varying times after surgery. Sodium borocaptate and boronophenylalanine administered i.v. have been used as the boron delivery agents. The best survival data from these studies are at least comparable with those obtained by current standard therapy for glioblastoma multiforme, and the safety of the procedure has been established. Conclusions: Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor boron content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If these issues are adequately addressed, then BNCT could move forward as a treatment modality.
Radiation Oncology | 2012
Rolf F. Barth; M. Graça H. Vicente; Otto K. Harling; W. S. Kiger; Kent J. Riley; Peter J. Binns; F.M. Wagner; Minoru Suzuki; Teruhito Aihara; Itsuro Kato; Shinji Kawabata
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.
Photochemistry and Photobiology | 2003
David Kessel; Raymond Luguya; M. Graça H. Vicente
Two meso‐tetraphenylporphyrin derivatives bearing adjacent: 5,10‐di[4‐(N‐trimethylaminophenyl)‐15,20‐diphenylporphyrin (DADP‐a) or opposite: 5,15‐di[4‐(N‐trimethylaminophenyl)‐10,20‐diphenylporphyrin (DADP‐o) cationic‐N‐(CH3)3+ groups on two of the para‐phenyl positions were examined with regard to photodynamic properties as a function of charge distribution. The two adjacent positive charges in the DADP‐a structure result in a molecular distortion (asymmetry), likely from electrostatic repulsion. This could be responsible for the unusual interaction of this compound with some solvents and detergent micelles. In contrast, DADP‐o is a much more symmetric molecule. In a cellular environment, fluorescence spectra of the two agents were essentially identical. Subcellular localization played a major role in photodynamic efficacy. DADP‐a localized in mitochondria, and irradiation of photosensitized cells (640–650 nm) resulted in a rapid loss of the mitochondrial membrane potential (ΔΨm), usually a prelude to apoptotic cell death. In contrast, DADP‐o localized in lysosomes, and extensive lysosomal photodamage was observed after irradiation. Both steady‐state accumulation levels and absorbance spectra favored DADP‐o, but the light dose required for a 90% cell kill was two‐fold greater for DADP‐o than for DADP‐a, at a constant extracellular sensitizer concentration. These data indicate that, on a photons/cell basis, DADP‐a was five‐fold more efficacious. Fluorescence emission spectra in different solvents and detergents demonstrated a tendency for DADP‐a association. We interpret these results to indicate partition of both drugs to membrane loci, with mitochondria being the more lethal site for photodamage.
New Journal of Chemistry | 2009
Lijuan Jiao; Jilong Li; Shengzhou Zhang; Chao Wei; Erhong Hao; M. Graça H. Vicente
Copper ion is a biochemically essential yet toxic metal ion, connected to serious neurodegenerative diseases, and also has been identified as an environmental pollutant. For the effective detection of Cu2+ in biological and environmental systems, we have developed a new membrane-permeable Cu2+-selective water-soluble BODIPY 1, which was synthesized by nucleophilic disubstitution of novel 3,5-diiodo-BODIPY 4 with N,N-bis(2-hydroxyethyl)amines. BODIPY 1 shows a highly sensitive and selective fluorescence response to Cu2+ in aqueous solution. Fluorescence image experiments establish that 1 can be used to monitor intracellular Cu2+ within living cells.
Journal of Porphyrins and Phthalocyanines | 2002
Jens Osterloh; M. Graça H. Vicente
The photosensitizing and pharmacokinetic properties of porphyrin-type compounds have been investigated for nearly a century. In the last decade, two porphyrin derivatives were approved in the U.S.A. and in several other countries for the photodynamic treatment of various lesions. An overview of the different mechanisms for preferential porphyrinoid localization in malignant tumors is presented herein. Several uptake pathways are possible for each photosensitizer, which are determined by its structure, mode of delivery and tumor type. Comparisons of the different mechanisms and correlations with the structure of the sensitizer are presented. Current delivery systems for porphyrin sensitizers are described, as well as recent strategies for enhancing their tumor-specificity, including conjugation to a carrier system that selectively targets a tumor-associated receptor or antigen.
Organic and Biomolecular Chemistry | 2010
Lijuan Jiao; Changjiang Yu; Timsy Uppal; Mingming Liu; Yan Li; Yunyou Zhou; Erhong Hao; Xiaoke Hu; M. Graça H. Vicente
Amphiphilic and long wavelength red fluorescent dyes (4 and 7) were prepared from the Sonogashira coupling reactions of 3,5-diiodo-BODIPYs (1 and 6). One of these compounds, BODIPY 7, readily accumulated within human carcinoma HEp2 cells and was found to localize mainly within the endoplasmic reticulum (ER).
Biomacromolecules | 2012
Javoris Hollingsworth; Allison Richard; M. Graça H. Vicente; Paul S. Russo
The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.
Journal of Photochemistry and Photobiology B-biology | 2010
Timothy J. Jensen; M. Graça H. Vicente; Raymond Luguya; Jolanna Norton; Frank R. Fronczek; Kevin M. Smith
Five cationic porphyrins bearing one to four -N(CH(3))(3)(+) groups linked to the p-phenyl positions of 5,10,15,20-tetraphenylporphyrin (TPP) were synthesized in order to study the effect of overall charge and its distribution on the cellular uptake, phototoxicity and intracellular localization using human carcinoma HEp2 cells. The di-cationic porphyrins DADP-o and DADP-a accumulated the most within cells and preferentially localize within vesicular compartments and in mitochondria. Of these two only DADP-a was phototoxic to the cells (IC(50)=3 microM at 1 J/cm(2)). The mono-cationic porphyrin MAP was found to be the most phototoxic of the series, and it localized mainly in lipid membranes, including the plasma membrane, ER, mitochondria, and Golgi. Both the tri-cationic porphyrin TRAP and the tetra-cationic porphyrin TEAP localized subcellularly mainly in the mitochondria, but of the two only TEAP showed moderate phototoxicity (IC(50)=8 microM at 1 J/cm(2)). Our results suggest that MAP is the most promising PDT photosensitizer, and that both DADP-o and TRAP might find application as transport vehicles for therapeutics into cells.
Journal of Medicinal Chemistry | 2008
Martha Sibrian-Vazquez; Timothy J. Jensen; M. Graça H. Vicente
A series of four porphyrin-peptide conjugates bearing one linear bifunctional sequence containing a cell penetrating peptide (CPP) and a nuclear localization signal (NLS) were synthesized and their in vitro biological and stability properties investigated. All conjugates accumulated within human HEp2 cells to a significantly higher extent than their porphyrin-PEG precursor, and the extent of their uptake and cytotoxicity depends on the nature and sequence of the amino acids. Conjugates 2 and 5 bearing a NLS-CPP accumulated the most within cells and were the most phototoxic (IC50 approximately 7 microM at 1 J/cm2). All conjugates localized preferentially within the cell lysosomes, and in addition, conjugate 2 was also found in the ER. All conjugates were highly stable under nonenzymatic conditions, but their peptide sequences were cleaved to some extent (ca. 50% after 24 h) by proteolytic enzymes, such as cathepsin B, cathepsin D, prolidase, and plasmin.
Chemistry: A European Journal | 2012
Timsy Uppal; Xiaoke Hu; Frank R. Fronczek; Stephanie Maschek; Petia Bobadova-Parvanova; M. Graça H. Vicente
A series of new functionalized mono- and dibenzo-appended BODIPY dyes were synthesized from a common tetrahydroisoindole precursor following two different synthetic routes. Route A involved the assembly of the BODIPY core prior to aromatization, while in Route B the aromatization step was performed first. In general, Route A gave higher yields of the target dibenzo-BODIPYs, due to the ease of aromatization of the BODIPYs compared with the corresponding dipyrromethenes, probably due to their higher stability under the oxidative conditions (2,3-dichloro-5,6-dicyano-1,4-benzoquinone in refluxing toluene). However, due to the slow oxidation of highly electron-deficient BODIPY 3 c bearing a meso-C(6)F(5) group, dibenzo-BODIPY 4 c was obtained, in 35 % overall from dipyrromethane, only by Route B. Computational calculations performed at the 6-31G(d,p) level are in agreement with the experimental results, showing similar relative energies for all reaction intermediates in both routes. In addition, BODIPY 3 c had the highest molecular electrostatic potential (MEPN), confirming its high electron deficiency and consequent resistance toward oxidation. X-ray analyses of eight BODIPYs and several intermediates show that benzannulation further enhances the planarity of these systems. The π-extended BODIPYs show strong red-shifted absorptions and emissions, about 50-60 nm per benzoannulated ring, at 589-658 and 596-680 nm, respectively. In particular, db-BODIPY 4 c bearing a meso-C(6)F(5) group showed the longest λ(max) of absorption and emission, along with the lowest fluorescence quantum yield (0.31 in CH(2)Cl(2)); on the other hand monobenzo-BODIPY 8 showed the highest quantum yield (0.99) of this series. Cellular investigations using human carcinoma HEp2 cells revealed high plasma membrane permeability for all dibenzo-BODIPYs, low dark- and photo-cytotoxicities and intracellular localization in the cell endoplasmic reticulum, in addition to other organelles. Our studies indicate that benzo-appended BODIPYs, in particular the highly stable meso-substituted BODIPYs, are promising fluorophores for bioimaging applications.