M Granzow
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M Granzow.
Journal of Hepatology | 2010
Jonel Trebicka; Martin Hennenberg; Margarete Odenthal; Khanwali Shir; Sabine Klein; M Granzow; A. Vogt; H. P. Dienes; Frank Lammert; Jürg Reichen; Jörg Heller; Tilman Sauerbruch
BACKGROUND & AIMS Activation of hepatic stellate cells (HSC) and transdifferentiation to myofibroblasts following liver injury is the main culprit for hepatic fibrosis. Myofibroblasts show increased proliferation, migration, contraction, and production of extracellular matrix (ECM). In vitro, HMG-CoA reductase inhibitors (statins) inhibit proliferation and induce apoptosis of myofibroblastic HSC. To investigate the antifibrotic effects of atorvastatin in vivo we used bile duct ligated rats (BDL). METHODS BDL rats were treated with atorvastatin (15 mg/kg/d) immediately after ligation (prophylactically) or in on-going fibrosis (therapeutically). Fibrosis was assessed by hydroxyproline content and Sirius-red staining. The activation of HSC was investigated by analysis of alphaSMA expression. mRNA levels of cytokines and procollagen were analyzed by RT-PCR, and MMP-2 activity by zymography. Proliferation was assessed by expression of cathepsins (B and D), proliferating cell nuclear antigen (PCNA), and Ki67-staining. Apoptosis was characterized by caspase-3 activity, cleavage of PARP-1, and TUNEL assay. Hepatic inflammation was investigated by serum parameters and liver histology. RESULTS Prophylactic and early therapy with atorvastatin significantly attenuated fibrosis and HSC activation. Later therapy lacked significant effects on fibrosis but reduced profibrotic cytokine expression and led to a more quiescent state of HSC with less proliferation and apoptosis, while hepatic inflammation did not change. CONCLUSIONS This study shows that very early atorvastatin treatment inhibits HSC activation and fibrosis in the BDL model in vivo, while late treatment reduces HSC turnover and activity. Our findings underline that long-term studies in humans are warranted.
Liver International | 2011
Jonel Trebicka; Ildiko Racz; Sören V. Siegmund; Erlind Cara; M Granzow; Robert Schierwagen; Sabine Klein; Alexandra Wojtalla; Martin Hennenberg; Sebastian Huss; Hans-Peter Fischer; Jörg Heller; Andreas Zimmer; Tilman Sauerbruch
Background: Alcohol is a common cause of hepatic liver injury with steatosis and fibrosis. Cannabinoid receptors (CB) modulate steatosis, inflammation and fibrogenesis. To investigate the differences between CB1 and CB2 in the hepatic response to chronic alcohol intake, we examined CB knockout mice (CB1−/−, CB2−/−).
Journal of Hepatology | 2012
Sabine Klein; Marike van Beuge; M Granzow; Leonie Beljaars; Robert Schierwagen; Sibel Kilic; Iren Heidari; Sebastian Huss; Tilman Sauerbruch; Klaas Poelstra; Jonel Trebicka
BACKGROUND & AIMS Rho-kinase activation mediates cell contraction and increases intrahepatic resistance and consequently portal pressure in liver cirrhosis. Systemic Rho-kinase inhibition decreases portal pressure in cirrhosis, but also arterial pressure. Thus, liver-specific Rho-kinase inhibition is needed. The delivery of Rho-kinase inhibitor to activated hepatic stellate cells reduces fibrosis. It might also relax these contractile cells and therewith decrease intrahepatic resistance. We tested this hypothesis by performing acute experiments in cirrhotic rats. METHODS Cirrhosis models were CCl(4)-intoxication and bile duct ligation. Three hours after injection of the Rho-kinase inhibitor (Y26732) coupled with a carrier (mannose-6-phosphate modified human serum albumin), which targets activated hepatic stellate cells, hemodynamics were analyzed by the colored microsphere technique and direct pressure measurements. The delivery site and effect of Rho-kinase inhibitor were investigated by immunohistochemical stainings, as well as Western blot. Experiments with Rho-kinase inhibitor coupled with unmodified human serum albumin served as untargeted control. RESULTS In both models of cirrhosis, the carrier coupled Rho-kinase inhibitor lowered the portal pressure and decreased the hepatic-portal resistance. Immunohistochemical desmin-staining showed the carrier in hepatic stellate cells. The targeted therapy decreased the expression of the phosphorylated substrate of Rho-kinase (moesin) and abolished myosin light chains phosphorylation in fibrotic septae (collagen-staining). The targeted Rho-kinase inhibitor showed no major extrahepatic effects. By contrast, the untargeted Rho-kinase inhibitor elicited severe systemic hypotension. CONCLUSIONS Activated hepatic stellate cells are crucially involved in portal hypertension in cirrhosis. Targeting of Rho-kinase in hepatic stellate cells not only decreased fibrosis, as previously shown, but also lowers portal pressure acutely without major systemic effects as demonstrated in this study.
Hepatology | 2014
M Granzow; Robert Schierwagen; Sabine Klein; Benita Kowallick; Sebastian Huss; Markus Linhart; Irela Gretchen Reza Mazar; Jan Görtzen; A. Vogt; Frank A. Schildberg; Maria A. Gonzalez-Carmona; Alexandra Wojtalla; B Krämer; Jacob Nattermann; Sören V. Siegmund; Nikos Werner; Dieter O. Fürst; Wim Laleman; Percy A. Knolle; Vijay H. Shah; Tilman Sauerbruch; Jonel Trebicka
Activation of the renin angiotensin system resulting in stimulation of angiotensin‐II (AngII) type I receptor (AT1R) is an important factor in the development of liver fibrosis. Here, we investigated the role of Janus kinase 2 (JAK2) as a newly described intracellular effector of AT1R in mediating liver fibrosis. Fibrotic liver samples from rodents and humans were compared to respective controls. Transcription, protein expression, activation, and localization of JAK2 and downstream effectors were analyzed by real‐time polymerase chain reaction, western blotting, immunohistochemistry, and confocal microscopy. Experimental fibrosis was induced by bile duct ligation (BDL), CCl4 intoxication, thioacetamide intoxication or continuous AngII infusion. JAK2 was inhibited by AG490. In vitro experiments were performed with primary rodent hepatic stellate cells (HSCs), Kupffer cells (KCs), and hepatocytes as well as primary human and human‐derived LX2 cells. JAK2 expression and activity were increased in experimental rodent and human liver fibrosis, specifically in myofibroblastic HSCs. AT1R stimulation in wild‐type animals led to activation of HSCs and fibrosis in vivo through phosphorylation of JAK2 and subsequent RhoA/Rho‐kinase activation. These effects were prevented in AT1R−/− mice. Pharmacological inhibition of JAK2 attenuated liver fibrosis in rodent fibrosis models. In vitro, JAK2 and downstream effectors showed increased expression and activation in activated HSCs, when compared to quiescent HSCs, KCs, and hepatocytes isolated from rodents. In primary human and LX2 cells, AG490 blocked AngII‐induced profibrotic gene expression. Overexpression of JAK2 led to increased profibrotic gene expression in LX2 cells, which was blocked by AG490. Conclusion: Our study substantiates the important cell‐intrinsic role of JAK2 in HSCs for development of liver fibrosis. Inhibition of JAK2 might therefore offer a promising therapy for liver fibrosis. (Hepatology 2014;60:334–348)
Hepatology | 2009
Jonel Trebicka; Martin Hennenberg; Andrea Schulze Pröbsting; Wim Laleman; Sabine Klein; M Granzow; Frederik Nevens; Johan Zaagsma; Jörg Heller; Tilman Sauerbruch
Increased intrahepatic resistance and splanchnic blood flow cause portal hypertension in liver cirrhosis. Nonselective β‐adrenoceptor (β‐AR) antagonists have beneficial effects on hyperdynamic circulation and are in clinical use. In this context, the role of the β3‐AR is undefined. Here we investigated their expression and role in portal hypertension in patients and rats with liver cirrhosis. We analyzed cirrhotic human and rat tissues (liver, splanchnic vessels) and primary rat cells. Protein expression of β3‐AR was determined by western blot and messenger RNA (mRNA) levels by reverse‐transcription polymerase chain reaction (RT‐PCR). Activities of Rho‐kinase and the nitric oxide (NO) effector protein kinase G (PKG) were assessed by way of substrate phosphorylation (moesin, vasodilator‐stimulated phosphoprotein [VASP]). Cyclic 3′,5′ adenosine monophosphate (cAMP) accumulation was determined by an enzyme‐immunoassay kit. The effects of selective β3‐AR agonists (CGP12177A, BRL37344) and antagonist (SR59230A) were investigated by collagen matrix contraction of hepatic stellate cells (HSCs), in situ liver perfusions, and in vivo hemodynamic parameters in bile duct ligation and carbon tetrachloride intoxication in cirrhotic rats. In cirrhosis of humans and rats, β3‐AR expression is markedly increased in hepatic and in splanchnic tissues. Stimulation of β3‐AR leads to relaxation of HSCs by way of cAMP accumulation, and by inhibition of Rho‐kinase activity; any role of NO and its effector PKG was not observed. β3‐AR agonists decrease intrahepatic resistance and portal pressure in cirrhotic rats. Conclusion: There is a marked hepatic and mesenteric up‐regulation of β3‐ARs in human cirrhosis and in two different animal models of cirrhosis. The β3‐AR‐agonists should be further evaluated for therapy of portal hypertension. (HEPATOLOGY 2009.)
Gastroenterology | 2013
Josephine A Grace; Sabine Klein; Chandana B. Herath; M Granzow; Robert Schierwagen; Noemi Masing; Thomas Walther; Tilman Sauerbruch; Louise M. Burrell; Peter W Angus; Jonel Trebicka
BACKGROUND & AIMS Splanchnic vascular hypocontractility with subsequent increased portal venous inflow leads to portal hypertension. Although the renin-angiotensin system contributes to fibrogenesis and increased hepatic resistance in patients with cirrhosis, little is known about its effects in the splanchnic vasculature, particularly those of the alternate system in which angiotensin (Ang) II is cleaved by the Ang-converting enzyme-2 (ACE2) to Ang-(1-7), which activates the G-protein-coupled Mas receptor (MasR). We investigated whether this system contributes to splanchnic vasodilatation and portal hypertension in cirrhosis. METHODS We measured levels of renin-angiotensin system messenger RNA and proteins in splanchnic vessels from patients and rats with cirrhosis. Production of Ang-(1-7) and splanchnic vascular reactivity to Ang-(1-7) was measured in perfused mesenteric vascular beds from rats after bile-duct ligation. Ang-(1-7) and MasR were blocked in rats with cirrhosis to examine splanchnic vascular hemodynamics and portal pressure response. RESULTS Levels of ACE2 and MasR were increased in splanchnic vessels from cirrhotic patients and rats compared with healthy controls. We also observed an ACE2-dependent increase in Ang-(1-7) production. Ang-(1-7) mediated splanchnic vascular hypocontractility in ex vivo splanchnic vessels from rats with cirrhosis (but not control rats) via MasR stimulation. Identical effects were observed in the splanchnic circulation in vivo. MasR blockade reduced portal pressure, indicating that activation of this receptor in splanchnic vasculature promotes portal inflow to contribute to development of portal hypertension. In addition, the splanchnic effects of MasR required nitric oxide. Interestingly, Ang-(1-7) also decreased hepatic resistance. CONCLUSIONS In the splanchnic vessels of patients and rats with cirrhosis, increased levels of ACE2 appear to increase production of Ang-(1-7), which leads to activation of MasR and splanchnic vasodilatation in rats. This mechanism could cause vascular hypocontractility in patients with cirrhosis, and might be a therapeutic target for portal hypertension.
Laboratory Investigation | 2011
Martin Hennenberg; Jonel Trebicka; Zaki Kohistani; Christian Stark; Hd Nischalke; B Krämer; Christian Körner; Sabine Klein; M Granzow; Hans-Peter Fischer; Jörg Heller; Tilman Sauerbruch
Portal hypertension in cirrhosis depends on increased intrahepatic vascular resistance, which is explained by fibrosis and intrahepatic hyperresponsiveness to vasoconstrictors. Both are caused by activation and proliferation of hepatic stellate cells (HSCs). Portal hypertension of cirrhotic rats can be reduced by the multikinase inhibitor sorafenib, due to a reduction of intrahepatic vascular resistance. Therefore, the hepatic effects of sorafenib require further understanding. Here, we investigated hepatic and HSC-specific sorafenib effects in cirrhotic rats. Animal models of bile duct ligation-induced secondary biliary cirrhosis in rats were studied. The rats were treated with sorafenib (60 mg/kg/day) for 1 week, starting after established cirrhosis. Histological evaluation was carried out using hemalaun and eosin (HE) staining. Apoptosis was studied by PARP cleavage, colorimetric caspase-3 assay, and electrophoretic DNA detection. HSC activation was studied by hepatic Sirius red and immunohistochemical αSMA (α-smooth muscle actin) staining, and by in vitro experiments with culture-activated primary HSCs. Biochemical serum parameters suggested the occurrence of sorafenib-induced liver damage. HE staining revealed histological changes in livers of sham-operated and bile duct-ligated (BDL) rats in response to sorafenib, which were different in both groups. In BDL rats and isolated HSCs, the treatment with sorafenib reduced hepatic αSMA and procollagen-1α mRNA expression. As shown by immunohistochemical staining, perisinusoidal αSMA expression was reduced by sorafenib in BDL rats. This was associated with reduced perisinusoidal deposition of extracellular matrix, as revealed by Sirius red staining. Although no change in PARP cleavage and only a minor increase in hepatic caspase-3 activity were detected in BDL rats in response to sorafenib, livers of sorafenib-treated BDL rats contained small DNA fragments, which were not observed in untreated BDL rats. In conclusion, sorafenib treatment reduces the number of activated HSCs in cirrhotic livers. This leads to the decrease in intrahepatic vascular resistance, but also to liver damage in the dosage we used. Therefore, any translation to portal hypertensive patients who may profit from sorafenib should be done with particular care.
Frontiers in Physiology | 2013
Robert Schierwagen; Diana Julie Leeming; Sabine Klein; M Granzow; M.J. Nielsen; Tilman Sauerbruch; Aleksander Krag; Morten A. Karsdal; Jonel Trebicka
Background: Progression of liver fibrosis is characterized by synthesis and degradation of extracellular matrix (ECM). Matrix-metalloproteinases (MMP) cleave collagen fibers at a specific site and thereby generate soluble fragments of ECM (neo-epitopes). The levels of these neo-epitopes might reflect the stage of liver fibrosis and may allow monitoring of anti-fibrotic therapies. Here we analyzed these neo-epitopes as read-out for a liver directed therapy with statins. Methods: Bile duct ligation (BDL) was performed on wild type rats, which received atorvastatin (15 mg/kg*d) for 1 week starting at 1, 2, 3, 4 and 5 weeks after BDL (T1–T5), while controls remained untreated. Hepatic fibrosis was analyzed by immunohistochemistry and hepatic hydroxyproline content. TGFβ levels were measured by RT-PCR. Proteolytic activity of MMP-2 was examined by zymography. Levels of degradation MMP driven type I, III, IV and VI collagen degradation (C1M, C3M, C4M, and C6M) and type III and IV collagen formation (PRO-C3 and P4NP7S) markers were assessed by specific ELISAs in serum probes. Results: Serum markers of ECM neo-epitopes reflected significantly the deposition of ECM in the liver and were able to distinguish between early (T1–T3) and severe fibrosis (T4–T5). Statin treatment resulted in reduction of neo-epitope markers, especially when therapy was started in the stage of severe fibrosis (T4–T5). Furthermore, these markers correlated with hepatic expression of profibrotic cytokines TGFβ1 and TGFβ2. Formation markers of type III and IV collagen (PRO-C3 and P4NP7S) and degradation markers C4M and C6M correlated significantly with hepatic MMP-2 activity in rats with severe fibrosis. Conclusion: Determination of ECM remodeling turnover markers in serum allowed a distinction between mild and severe fibrosis. With respect to statin therapy, the markers may serve as read-out for efficacy of anti-fibrotic treatment.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2012
Alexandra Wojtalla; Frank Herweck; M Granzow; Sabine Klein; Jonel Trebicka; Sebastian Huss; Raissa Lerner; Beat Lutz; Frank A. Schildberg; Percy A. Knolle; Tilman Sauerbruch; Manfred V. Singer; Andreas Zimmer; Sören V. Siegmund
The endocannabinoid system is a crucial regulator of hepatic fibrogenesis. We have previously shown that the endocannabinoid anandamide (AEA) is a lipid mediator that blocks proliferation and induces death in hepatic stellate cells (HSCs), the main fibrogenic cell type in the liver, but not in hepatocytes. However, the effects of other endocannabinoids such as N-arachidonoyl dopamine (NADA) have not yet been investigated. The NADA-synthesizing enzyme tyrosine hydroxylase was mainly expressed in sympathetic neurons in portal tracts. Its expression pattern stayed unchanged in normal or fibrotic liver. NADA dose dependently induced cell death in culture-activated primary murine or human HSCs after 2-4 h, starting from 5 μM. Despite caspase 3 cleavage, NADA-mediated cell death showed typical features of necrosis, including ATP depletion. Although the cannabinoid receptors CB1, CB2, or transient receptor potential cation channel subfamily V, member 1 were expressed in HSCs, their pharmacological or genetic blockade failed to inhibit NADA-mediated death, indicating a cannabinoid-receptor-independent mechanism. Interestingly, membrane cholesterol depletion with methyl-β-cyclodextrin inhibited AEA- but not NADA-induced death. NADA significantly induced reactive oxygen species formation in HSCs. The antioxidant glutathione (GSH) significantly decreased NADA-induced cell death. Similar to AEA, primary hepatocytes were highly resistant against NADA-induced death. Resistance to NADA in hepatocytes was due to high levels of GSH, since GSH depletion significantly increased NADA-induced death. Moreover, high expression of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in hepatocytes also conferred resistance towards NADA-induced death, since pharmacological or genetic FAAH inhibition significantly augmented hepatocyte death. Thus the selective induction of cell death in HSCs proposes NADA as a novel antifibrogenic mediator.
Scientific Reports | 2015
Frank E. Uschner; Ganesh Ranabhat; Steve S. Choi; M Granzow; Sabine Klein; Robert Schierwagen; Esther Raskopf; Sebastian Gautsch; Peter F.M. van der Ven; Dieter O. Fürst; Christian P. Strassburg; Tilman Sauerbruch; Anna Mae Diehl; Jonel Trebicka
Liver cirrhosis but also portal vein obstruction cause portal hypertension (PHT) and angiogenesis. This study investigated the differences of angiogenesis in cirrhotic and non-cirrhotic PHT with special emphasis on the canonical (Shh/Gli) and non-canonical (Shh/RhoA) hedgehog pathway. Cirrhotic (bile duct ligation/BDL; CCl4 intoxication) and non-cirrhotic (partial portal vein ligation/PPVL) rats received either atorvastatin (15 mg/kg; 7d) or control chow before sacrifice. Invasive hemodynamic measurement and Matrigel implantation assessed angiogenesis in vivo. Angiogenesis in vitro was analysed using migration and tube formation assay. In liver and vessel samples from animals and humans, transcript expression was analyzed using RT-PCR and protein expression using Western blot. Atorvastatin decreased portal pressure, shunt flow and angiogenesis in cirrhosis, whereas atorvastatin increased these parameters in PPVL rats. Non-canonical Hh was upregulated in experimental and human liver cirrhosis and was blunted by atorvastatin. Moreover, atorvastatin blocked the non-canonical Hh-pathway RhoA dependently in activated hepatic steallate cells (HSCs). Interestingly, hepatic and extrahepatic Hh-pathway was enhanced in PPVL rats, which resulted in increased angiogenesis. In summary, statins caused contrary effects in cirrhotic and non-cirrhotic portal hypertension. Atorvastatin inhibited the non-canonical Hh-pathway and angiogenesis in cirrhosis. In portal vein obstruction, statins enhanced the canonical Hh-pathway and aggravated PHT and angiogenesis.