M. H. Berntsen
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. H. Berntsen.
Nature Materials | 2012
P. Dziawa; B.J. Kowalski; K. Dybko; R. Buczko; A. Szczerbakow; M. Szot; E. Łusakowska; T. Balasubramanian; Bastian M. Wojek; M. H. Berntsen; Oscar Tjernberg; T. Story
Topological insulators are a class of quantum materials in which time-reversal symmetry, relativistic effects and an inverted band structure result in the occurrence of electronic metallic states on the surfaces of insulating bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical results have suggested the existence of topological crystalline insulators (TCIs), a class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in ensuring topological protection. In this study we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a TCI for x = 0.23. Temperature-dependent angle-resolved photoelectron spectroscopy demonstrates that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a TCI. These experimental findings add a new class to the family of topological insulators, and we anticipate that they will lead to a considerable body of further research as well as detailed studies of topological phase transitions.
Physical Review B | 2013
Bastian M. Wojek; R. Buczko; S. Safaei; P. Dziawa; B.J. Kowalski; M. H. Berntsen; T. Balasubramanian; M. Leandersson; A. Szczerbakow; P. Kacman; T. Story; Oscar Tjernberg
We study the nature of (001) surface states in Pb0.73Sn0.27Se in the newly discovered topological-crystalline-insulator (TCI) phase as well as the corresponding topologically trivial state above th ...
Review of Scientific Instruments | 2011
M. H. Berntsen; Olof Götberg; Oscar Tjernberg
We present an experimental setup for laser-based angle-resolved time-of-flight photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of the light source, variable between 0.2 and 8 MHz, enables high photoelectron count rates and short acquisition times. By using a time-of-flight analyzer with angle-resolving capabilities, electrons emitted from the sample within a circular cone of up to ±15° can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution, and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-T(c) superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state are presented along with measurements of the Fermi surface of the high-T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8 + δ) (Bi2212).
Physical Review B | 2014
C. M. Polley; P. Dziawa; A. Reszka; A. Szczerbakow; R. Minikayev; S. Safaei; P. Kacman; R. Buczko; Johan Adell; M. H. Berntsen; Bastian M. Wojek; Oscar Tjernberg; B.J. Kowalski; T. Story; Balasubramanian Thiagarajan
We present angle-resolved photoemission spectroscopy measurements of the surface states on in-situ grown (111) oriented films of Pb1-xSnxSe, a three-dimensional topological crystalline insulator. We observe surface states with Dirac-like dispersion at (Gamma) over bar and (M) over bar in the surface Brillouin zone, supporting recent theoretical predictions for this family of materials. We study the parallel dispersion isotropy and Dirac-point binding energy of the surface states, and perform tight-binding calculations to support our findings. The relative simplicity of the growth technique is encouraging, and suggests a clear path for future investigations into the role of strain, vicinality, and alternative surface orientations in (Pb,Sn)Se solid solutions.
Review of Scientific Instruments | 2010
M. H. Berntsen; Pål Palmgren; M. Leandersson; A. Hahlin; J. Åhlund; B. Wannberg; Martin Månsson; Oscar Tjernberg
A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented.
Scientific Reports | 2016
Boris Vodungbo; Bahrati Tudu; Jonathan Perron; Renaud Delaunay; L. Müller; M. H. Berntsen; G. Grübel; Gregory Malinowski; Christian Weier; J. Gautier; Guillaume Lambert; Philippe Zeitoun; C. Gutt; Emmanuelle Jal; A. H. Reid; Patrick Granitzka; N. Jaouen; Georgi L. Dakovski; Stefan Moeller; Michael P. Minitti; Ankush Mitra; S. Carron; Bastian Pfau; Clemens von Korff Schmising; Michael D. Schneider; S. Eisebitt; Jan Lüning
Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.
Physical Review B | 2015
C. E. Matt; C. G. Fatuzzo; Y. Sassa; Martin Månsson; Sara Fatale; V. Bitetta; Xiaoying Shi; S. Pailhès; M. H. Berntsen; Tohru Kurosawa; M. Oda; Naoki Momono; O. J. Lipscombe; Stephen M Hayden; Jiaqiang Yan; J.-S. Zhou; John B. Goodenough; Sunseng Pyon; T. Takayama; H. Takagi; L. Patthey; Azzedine Bendounan; Elia Razzoli; M. Shi; Nicholas C. Plumb; M. Radovic; M. Grioni; J. Mesot; Oscar Tjernberg; Johan Chang
We report an angle-resolved photoemission study of the charge stripe ordered La1.6-xNd0.4SrxCuO4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectral weight appears to be lost. These observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.
Nature Communications | 2015
Bastian M. Wojek; M. H. Berntsen; V. Jonsson; A. Szczerbakow; P. Dziawa; B.J. Kowalski; T. Story; Oscar Tjernberg
Since the advent of topological insulators hosting Dirac surface states, efforts have been made to gap these states in a controllable way. A new route to accomplish this was opened up by the discovery of topological crystalline insulators where the topological states are protected by crystal symmetries and thus prone to gap formation by structural changes of the lattice. Here we show a temperature-driven gap opening in Dirac surface states within the topological crystalline insulator phase in (Pb,Sn)Se. By using angle-resolved photoelectron spectroscopy, the gap formation and mass acquisition is studied as a function of composition and temperature. The resulting observations lead to the addition of a temperature- and composition-dependent boundary between massless and massive Dirac states in the topological phase diagram for (Pb,Sn)Se (001). Overall, our results experimentally establish the possibility to tune between massless and massive topological states on the surface of a topological system.
Physical Review B | 2014
Bastian M. Wojek; P. Dziawa; B.J. Kowalski; A. Szczerbakow; A. M. Black-Schaffer; M. H. Berntsen; Balasubramanian Thiagarajan; T. Story; Oscar Tjernberg
The recent discovery of a topological phase transition in IV-VI narrow-gap semiconductors has revitalized the decades-old interest in the bulk band inversion occurring in these materials. Here we systematically study the (001) surface states of Pb1-xSnxSe mixed crystals by means of angle-resolved photoelectron spectroscopy in the parameter space 0 = T >= 9 K. Using the surface-state observations, we monitor directly the topological phase transition in this solid solution and gain valuable information on the evolution of the underlying fundamental band gap of the system. In contrast to common model expectations, the band-gap evolution appears to be nonlinear as a function of the studied parameters, resulting in the measuring of a discontinuous band-inversion process. This finding signifies that the anticipated gapless bulk state is in fact not a stable configuration and that the topological phase transition therefore exhibits features akin to a first-order transition.
Physical Review B | 2013
M. H. Berntsen; Olof Götberg; Bastian M. Wojek; Oscar Tjernberg
Several proposed applications and exotic effects in topological insulators rely on the presence of helical Dirac states at the interface between a topological insulator and a normal insulator. In t ...