M.H.M. Eppink
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.H.M. Eppink.
Bioresource Technology | 2013
Marieke Vanthoor-Koopmans; René H. Wijffels; Maria J. Barbosa; M.H.M. Eppink
Microalgae are a promising source for proteins, lipids and carbohydrates for the food/feed and biofuel industry. In comparison with soya and palm oil, microalgae can be grown in a more efficient and sustainable way. To make microalgae production economically feasible it is necessary to optimally use all produced compounds. To accomplish this focus needs to be put on biorefinery techniques which are mild and effective. Of the techniques described, Pulsed Electric Field (PEF) seems to be the most developed technique compared to other cell disruption applications. For separation technology ionic liquids seems most promising as they are able to both separate hydrophobic and hydrophilic compounds. But additional studies need to be evolved in the coming years to investigate their relevance as novel cell disruption and separation methods. We propose a complete downstream processing flow diagram that is promising in terms of low energy use and state of the art knowledge.
Biotechnology Advances | 2015
Emre Günerken; E. D'Hondt; M.H.M. Eppink; L. Garcia-Gonzalez; K. Elst; René H. Wijffels
Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies.
Energy and Environmental Science | 2016
Jesús Ruiz; Giuseppe Olivieri; Jeroen H. de Vree; Rouke Bosma; Philippe Willems; J. Hans Reith; M.H.M. Eppink; Dorinde M.M. Kleinegris; René H. Wijffels; Maria J. Barbosa
Microalgae show an enormous potential as sustainable feedstock for numerous bioproducts. The current work analyzes the feasibility of business cases for different markets of products from microalgae. We perform a techno-economic evaluation of the whole process chain including cultivation, biorefinery and market exploitation for a 100 hectares facility in six locations. Our projections show a current cost per unit of dry biomass of 3.4 € kg−1 for microalgae cultivation in Spain (excluding biorefining products), with an expected reduction to 0.5 € kg−1 in ten years. A sensitivity analysis reveals the roadmap to achieve this. Production of high-value products (e.g. pigments) would be currently profitable, with a net present value of 657 M€ in 15 years. Markets aimed at food and chemical commodities require further cost reductions for cost competitiveness, reachable in the next decade.
Green Chemistry | 2014
Rupali K. Desai; Mathieu Streefland; René H. Wijffels; M.H.M. Eppink
Ionic liquid-based aqueous two-phase extraction of a plant protein, Rubisco (Ribulose-1,5-biphosphate carboxylase oxygenase), using Iolilyte 221 PG and sodium potassium phosphate buffer, was investigated as a new alternative extraction method and compared with a conventional PEG-based two-phase system. The influence of various factors, such as the concentration of phase components, pH and temperature, on partitioning of Rubisco was evaluated by Design of Experiments. Rubisco partitions to the ionic liquid (IL) phase and the partition coefficients for the IL based two-phase system were 3–4 times higher than in a PEG-based system. Additionally, studies were done in aqueous solution of IL with varying concentrations to establish a relationship between IL concentration and protein stability. In addition to Rubisco, the stability of BSA and IgG1 was investigated in aqueous solution of two ionic liquids: Iolilyte 221PG and Cyphos 108. No fragmentation or aggregation was observed at 10% w/w concentration of the ionic liquid. However, all three proteins studied formed aggregates at 50% w/w concentration of ionic liquid. This indicates a narrow range of IL concentration for their application in protein extraction.
Bioresource Technology | 2015
P.R. Postma; T.L. Miron; Giuseppe Olivieri; Maria J. Barbosa; René H. Wijffels; M.H.M. Eppink
In this work, the mild disintegration of the microalgae Chlorella vulgaris for the release of intracellular products has been studied. By means of bead milling the microalgae suspensions were successfully disintegrated at different biomass concentrations (25-145 gDW kg(-1)) over a range of agitator speeds (6-12 m s(-1)). In all cases over 97% of cell disintegration was achieved resulting in a release of water soluble proteins. A clear optimum rate of disintegration and protein release was observed at an agitator speed of 9-10 m s(-1) regardless of the biomass concentration. Selective extraction of water soluble proteins was observed as proteins released sooner than cell disintegration took place. Proteins could be released at 85% lower energy input than for cell disintegration resulting in specific energy consumptions well below 2.5 kWh kgDW(-1).
Molecular Cancer Therapeutics | 2014
Wim H. A. Dokter; Ruud Ubink; M. van der Lee; M. van der Vleuten; T. van Achterberg; Daniëlle Jacobs; Eline M. Loosveld; D. van den Dobbelsteen; David F. Egging; Ellen Mattaar; P. Groothuis; Patrick Beusker; Ruud Coumans; Ronald Christiaan Elgersma; Wiro Michaël Petrus Bernardus Menge; John Joosten; Henri Johannes Spijker; Tijl Huijbregts; V. de Groot; M.H.M. Eppink; G. de Roo; Gijs Verheijden; Marco Timmers
A linker-drug platform was built on the basis of a cleavable linker-duocarmycin payload for the development of new-generation antibody–drug conjugates (ADC). A leading ADC originating from that platform is SYD983, a HER2-targeting ADC based on trastuzumab. HER2-binding, antibody-dependent cell-mediated cytotoxicity and HER2-mediated internalization are similar for SYD983 as compared with trastuzumab. HER2-expressing cells in vitro are very potently killed by SYD983, but SYD983 is inactive in cells that do not express HER2. SYD983 dose dependently reduces tumor growth in a BT-474 mouse xenograft in vivo. The ADC is stable in human and cynomolgus monkey plasma in vitro but shows relatively poor stability in mouse plasma due to mouse-specific carboxylesterase. SYD983 could be dosed up to 30 mg/kg in cynomolgus monkeys with high exposure, excellent stability in blood, and without severe toxic effects. The monkey safety study showed no SYD983-induced thrombocytopenia and no induction of peripheral sensory neuropathy, both commonly observed in trials and studies with ADCs based on tubulin inhibitors. Finally, to improve homogeneity, SYD983 was further purified by hydrophobic interaction chromatography resulting in an ADC (designated SYD985) predominantly containing DAR2 and DAR4 species. SYD985 showed high antitumor activity in two patient-derived xenograft models of HER2-positive metastatic breast cancers. In conclusion, the data obtained indicate great potential for this new HER2-targeting ADC to become an effective drug for patients with HER2-positive cancers with a favorable safety profile. More generally, this new-generation duocarmycin-based linker-drug technology could be used with other mAbs to serve more indications in oncology. Mol Cancer Ther; 13(11); 2618–29. ©2014 AACR.
Journal of Biological Chemistry | 1998
M.H.M. Eppink; H.A. Schreuder; W.J.H. van Berkel
The conserved residues His-162 and Arg-269 of the flavoprotein p-hydroxybenzoate hydroxylase (EC 1.14.13.2) are located at the entrance of the interdomain cleft that leads toward the active site. To study their putative role in NADPH binding, His-162 and Arg-269 were selectively changed by site-specific mutagenesis. The catalytic properties of H162R, H162Y, and R269K were similar to the wild-type enzyme. However, less conservative His-162 and Arg-269 replacements strongly impaired NADPH binding without affecting the conformation of the flavin ring and the efficiency of substrate hydroxylation. The crystal structures of H162R and R269T in complex with 4-hydroxybenzoate were solved at 3.0 and 2.0 Å resolution, respectively. Both structures are virtually indistinguishable from the wild-type enzyme-substrate complex except for the substituted side chains. In contrast to wild-type p-hydroxybenzoate hydroxylase, H162R is not inactivated by diethyl pyrocarbonate. NADPH protects wild-type p-hydroxybenzoate hydroxylase from diethylpyrocarbonate inactivation, suggesting that His-162 is involved in NADPH binding. Based on these results and GRID calculations we propose that the side chains of His-162 and Arg-269 interact with the pyrophosphate moiety of NADPH. An interdomain binding mode for NADPH is proposed which takes a novel sequence motif (Eppink, M. H. M., Schreuder, H. A., and van Berkel, W. J. H. (1997)Protein Sci. 6, 2454–2458) into account.
PLOS ONE | 2013
Bas van de Waterbeemd; Gijsbert Zomer; Jan van den IJssel; Lonneke van Keulen; M.H.M. Eppink; Peter van der Ley; Leo A. van der Pol
Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis.
Bioresource Technology | 2014
G.P. 't Lam; Marian H. Vermuë; Giuseppe Olivieri; L.A.M. van den Broek; Maria J. Barbosa; M.H.M. Eppink; René H. Wijffels; Dorinde M.M. Kleinegris
Flocculation of microalgae is a promising technique to reduce the costs and energy required for harvesting microalgae. Harvesting marine microalgae requires suitable flocculants to induce the flocculation under marine conditions. This study demonstrates that cationic polymeric flocculants can be used to harvest marine microalgae. Different organic flocculants were tested to flocculate Phaeodactylum tricornutum and Neochloris oleoabundans grown under marine conditions. Addition of 10 ppm of the commercial available flocculants Zetag 7557 and Synthofloc 5080H to P. tricornutum showed a recovery of, respectively, 98% ± 2.0 and 94% ± 2.9 after flocculation followed by 2h sedimentation. Using the same flocculants and dosage for harvesting N. oleoabundans resulted in a recovery of 52% ± 1.5 and 36% ± 11.3. This study shows that cationic polymeric flocculants are a viable option to pre-concentrate marine cultivated microalgae via flocculation prior to further dewatering.
Journal of Proteome Research | 2013
B. van de Waterbeemd; Geert P. M. Mommen; Jeroen L. A. Pennings; M.H.M. Eppink; René H. Wijffels; L.A. van der Pol; A.P.J.M. de Jong
At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in more detail, the protein content of detergent-extracted OMV is compared with two detergent-free alternatives. A novel proteomics strategy has been developed that allows quantitative analysis of many biological replicates despite inherent multiplex restrictions of dimethyl labeling. This enables robust statistical analysis of relative protein abundance. The comparison with detergent-extracted OMV reveales that detergent-free OMV are enriched with membrane (lipo)proteins and contain less cytoplasmic proteins due to a milder purification process. These distinct protein profiles are substantiated with serum blot proteomics, confirming enrichment with immunogenic proteins in both detergent-free alternatives. Therefore, the immunogenic protein content of OMV vaccines depends at least partially on the purification process. This study demonstrates that detergent-free OMV have a preferred composition.