M.H. Tunick
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.H. Tunick.
Journal of Dairy Science | 2011
P.M. Tomasula; Sudarsan Mukhopadhyay; Nivedita Datta; A Porto-Fett; J Call; J Luchansky; John A. Renye; M.H. Tunick
High-temperature, short-time pasteurization of milk is ineffective against spore-forming bacteria such as Bacillus anthracis (BA), but is lethal to its vegetative cells. Crossflow microfiltration (MF) using ceramic membranes with a pore size of 1.4 μm has been shown to reject most microorganisms from skim milk; and, in combination with pasteurization, has been shown to extend its shelf life. The objectives of this study were to evaluate MF for its efficiency in removing spores of the attenuated Sterne strain of BA from milk; to evaluate the combined efficiency of MF using a 0.8-μm ceramic membrane, followed by pasteurization (72°C, 18.6s); and to monitor any residual BA in the permeates when stored at temperatures of 4, 10, and 25°C for up to 28 d. In each trial, 95 L of raw skim milk was inoculated with about 6.5 log(10) BA spores/mL of milk. It was then microfiltered in total recycle mode at 50°C using ceramic membranes with pore sizes of either 0.8 μm or 1.4 μm, at crossflow velocity of 6.2 m/s and transmembrane pressure of 127.6 kPa, conditions selected to exploit the selectivity of the membrane. Microfiltration using the 0.8-μm membrane removed 5.91±0.05 log(10) BA spores/mL of milk and the 1.4-μm membrane removed 4.50±0.35 log(10) BA spores/mL of milk. The 0.8-μm membrane showed efficient removal of the native microflora and both membranes showed near complete transmission of the casein proteins. Spore germination was evident in the permeates obtained at 10, 30, and 120 min of MF time (0.8-μm membrane) but when stored at 4 or 10°C, spore levels were decreased to below detection levels (≤0.3 log(10) spores/mL) by d 7 or 3 of storage, respectively. Permeates stored at 25°C showed coagulation and were not evaluated further. Pasteurization of the permeate samples immediately after MF resulted in additional spore germination that was related to the length of MF time. Pasteurized permeates obtained at 10 min of MF and stored at 4 or 10°C showed no growth of BA by d 7 and 3, respectively. Pasteurization of permeates obtained at 30 and 120 min of MF resulted in spore germination of up to 2.42 log(10) BA spores/mL. Spore levels decreased over the length of the storage period at 4 or 10°C for the samples obtained at 30 min of MF but not for the samples obtained at 120 min of MF. This study confirms that MF using a 0.8-μm membrane before high-temperature, short-time pasteurization may improve the safety and quality of the fluid milk supply; however, the duration of MF should be limited to prevent spore germination following pasteurization.
Textile Research Journal | 2013
Jeanette M Cardamone; M.H. Tunick; Charles I. Onwulata
Keratin sponge/hydrogels formed by oxidation and reduction hydrolysis of US domestic fine- or coarse-grade wool exhibited distinctively different topologies, each with unique porous structure. These materials retained amino acids and microstructure as protein homologues of intact keratin. Amphoteric character was confirmed by differential dyeing with anionic and cationic dyes. Differential scanning calorimetry (DSC) provided evidence of molecular organization and the behavior of occluded moisture through measurements of glass transition, peak temperature, thermal degradation temperature, enthalpy of water removal, and degradation (Tg, Tw, ΔHw, Tt, and ΔHt). The absence of denaturation peaks indicated highly crosslinked molecular association. Low ΔHw indicated high plasticity and the ability to absorb and retain moisture. Small amplitude strain analysis rheology to measure storage or elastic modulus, G′, and shear loss or viscous modulus, G′′, as a function of applied strain characterized the sponge/hydrogels as covalently crosslinked networks. With viscoelastic properties typical of both liquids and solids, they maintained their structural integrity under strain.
Journal of Dairy Science | 2011
D.W. Olson; D.L. Van Hekken; M.H. Tunick; P.M. Tomasula; F.J. Molina-Corral; Alfonso Gardea
Queso Chihuahua, a semi-hard cheese manufactured from raw milk (RM) in northern Mexico, is being replaced by pasteurized milk (PM) versions because of food safety concerns and the desire for longer shelf life. In this study, the functional traits of authentic Mexican Queso Chihuahua made from RM or PM were characterized to identify sources of variation and to determine if pasteurization of the cheese milk resulted in changes to the functional properties. Two brands of RM cheese and 2 brands of PM cheese obtained in 3 seasons of the year from 4 manufacturers in Chihuahua, Mexico, were analyzed after 0, 4, 8, 12, and 16 wk of storage at 4°C. A color measurement spectrophotometer was used to collect color data before and after heating at 232°C for 5 min or 130°C for 75 min. Meltability was measured using the Schreiber Melt Test on samples heated to 232°C for 5 min. Sliceability (the force required to cut through a sample) was measured using a texture analyzer fitted with a wire cutter attachment. Proteolysis was tracked using sodium dodecyl sulfate-PAGE. Compared with PM cheeses, RM cheeses showed less browning upon heating, melted more at 232°C, and initially required a greater cutting force. With aging, cheeses increased in meltability, decreased in whiteness when measured before heating, and required less cutting force to slice. Seasonal variations in the cheesemilk had minimal or no effect on the functional properties. The differences in the functional properties can be attributed, in part, to the mixed microflora present in the RM cheeses compared with the more homogeneous microflora added during the manufacture of PM cheeses. The degree of proteolysis and subsequent integrity of the cheese matrix contribute to melt, slice, and color properties of the RM and PM cheeses. Understanding the functional properties of the authentic RM cheeses will help researchers and cheesemakers develop pasteurized versions that maintain the traditional traits desired in the cheeses.
Journal of Dairy Science | 2009
D.L. Van Hekken; Robert Wall; George A. Somkuti; M.A. Powell; M.H. Tunick; P.M. Tomasula
Transgenic cows secreting over 3 microg of lysostaphin/ mL of milk are protected against mastitis caused by Staphylococcus aureus, but it is unknown if active lysostaphin persists through dairy processing procedures or affects the production of fermented dairy foods. The objective of this study was to determine the fate of lysostaphin as milk was pasteurized and then processed into cheese. Raw milk from transgenic cows was heat treated at 63 degrees C for 30 min, 72 degrees C for 15 s (high temperature, short time), or 140 degrees C for 2 s (UHT). Portions of the high temperature, short-time milk were manufactured into semi-hard cheeses. Aliquots taken at each processing step were assayed to determine the quantity (ELISA) and activity (ability to inhibit S. aureus growth) of lysostaphin. Results indicated that most of the lysostaphin was present in the aqueous portion of the milk and was not affected by pasteurization, although UHT treatment reduced enzyme concentration by 60%. The quantity and activity of the lysostaphin decreased during cheesemaking. Based on the amount of lysostaphin present in the starting cheesemilk, 10 to 15% of the lysostaphin was recovered in the whey, 21 to 55% in the cheese curd at d 1, and 21 to 36% in cheese stored at 4 degrees C for 90 d. Enough of the lysostaphin secreted into milk by transgenic cows survived typical dairy processing conditions to impart potential value as a bioprotective agent against staphylococci in dairy foods.
Journal of Food Protection | 2000
D. L. van Hekken; K. T. Rajkowski; P.M. Tomasula; M.H. Tunick; V.H. Holsinger
A new processing method that rapidly forms curds and whey from milk has the potential to improve cheesemaking procedures if cheese starter cultures can tolerate the processing conditions. The survival of Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. lactis, or Streptococcus thermophilus through this new process was evaluated. Inoculated milk containing 0, 1, or 3.25% fat or Lactobacillus MRS broth or tryptone yeast lactose broth (depending on microorganism used) was sparged with CO2 to a pressure of 5.52 MPa and held for 5 min at 38 degrees C. Broth contained 7.93 to 8.78 log CFU/ ml before processing and 7.84 to 8.66 log CFU/ml afterward. Before processing, milk inoculated with L bulgaricus, L. lactis, or S. thermophilus contained 6.81, 7.35, or 6.75 log CFU/ml, respectively. After processing, the curds contained 5.68, 7.32, or 6.50 log CFU/g, and the whey had 5.05, 6.43, or 6.14 log CFU/ml, respectively. After processing, the pHs of control samples were lower by 0.41 units in broth, 0.53 units in whey, and 0.89 units in curd. The pH of the processed inoculated samples decreased by 0.3 to 0.53 units in broth, 0.32 to 0.37 units in whey, and 0.93 to 0.98 units in the curd. Storing curds containing L. lactis at 30 degrees C or control curds and curds with L. bulgaricus or S. thermophilus at 37 degrees C for an additional 48 h resulted in pHs of 5.22, 5.41, 4.53, or 4.99, respectively. This study showed that milk inoculated with cheese starter cultures and treated with CO2 under high pressure to precipitate casein-produced curds that contained sufficient numbers of viable starter culture to produce lactic acid, thereby decreasing the pH.
Journal of Dairy Science | 2016
M.H. Tunick; Audrey Thomas-Gahring; Diane L. Van Hekken; Susan K. Iandola; Mukti Singh; Phoebe X. Qi; Dike O. Ukuku; Sudarsan Mukhopadhyay; Charles I. Onwulata; Peggy M. Tomasula
In a case study, we monitored the physical properties of 2 batches of whey protein concentrate (WPC) under adverse storage conditions to provide information on shelf life in hot, humid areas. Whey protein concentrates with 34.9 g of protein/100g (WPC34) and 76.8 g of protein/100g (WPC80) were stored for up to 18 mo under ambient conditions and at elevated temperature and relative humidity. The samples became yellower with storage; those stored at 35 °C were removed from the study by 12 mo because of their unsatisfactory appearance. Decreases in lysine and increases in water activity, volatile compound formation, and powder caking values were observed in many specimens. Levels of aerobic mesophilic bacteria, coliforms, yeast, and mold were <3.85 log10 cfu/g in all samples. Relative humidity was not a factor in most samples. When stored in sealed bags, these samples of WPC34 and WPC80 had a shelf life of 9 mo at 35 °C but at least 18 mo at lower temperatures, which should extend the market for these products.
Journal of Dairy Science | 2017
D.L. Van Hekken; M.H. Tunick; Daxi Ren; P.M. Tomasula
We compared the effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole and nonfat milk fat standards, and processed with or without homogenization, and with high-temperature-short-time or UHT pasteurization. The milk then underwent in vitro gastrointestinal digestion. Comparison of milk from organic and conventional herds showed that the milks responded to processing in similar ways. General composition was the same among the whole milk samples and among the nonfat milk samples. Protein profiles were similar, with intact caseins and whey proteins predominant and only minor amounts of peptides. Whole milk samples from grazing cows contained higher levels of α-linolenic (C18:3), vaccenic (C18:1 trans), and conjugated linoleic acids, and lower levels of palmitic (C16:0) and stearic (C18:0) acids than samples from nongrazing cows. Processing had no effect on conjugated linoleic acid and linolenic acid levels in milk, although homogenization resulted in higher levels of C8 to C14 saturated fatty acids. Of the 9 volatile compounds evaluated, milk from grazing cows contained lower levels of 2-butanone than milk from nongrazing cows, and milk from both farms showed spikes for heptanal in UHT samples and spikes for butanoic, octanoic, nonanoic, and N-decanoic acids in homogenized samples. At the start of in vitro digestion, nonfat raw and pasteurized milk samples formed the largest acid clots, and organic milk clots were larger than conventional milk clots; UHT whole milk formed the smallest clots. Milk digests from grazing cows had lower levels of free fatty acids than digests from nongrazing cows. In vitro proteolysis was similar in milk from both farms and resulted in 85 to 95% digestibility. Overall, milk from organic/grass-fed and conventional herds responded in similar ways to typical homogenization and heat processing used in United States dairy plants and showed only minor differences in chemical traits and in vitro digestion. Findings from this research enhance our knowledge of the effect of processing on the quality traits and digestibility of milk from organic/pasture-fed and confined conventional herds and will help health-conscious consumers make informed decisions about dairy selections.
Journal of Dairy Science | 2018
A.J. Bucci; D.L. Van Hekken; M.H. Tunick; John A. Renye; P.M. Tomasula
This work examines the use of mild heat treatments in conjunction with 2-pass microfluidization to generate cheese milk for potential use in soft cheeses, such as Queso Fresco. Raw, thermized, and high temperature, short time pasteurized milk samples, standardized to the 3% (wt/wt) fat content used in cheesemaking, were processed at 4 inlet temperature and pressure conditions: 42°C/75 MPa, 42°C/125 MPa, 54°C/125 MPa, and 54°C/170 MPa. Processing-induced changes in the physical, chemical, and microbial properties resulting from the intense pressure, shear, and cavitation that milk experiences as it is microfluidized were compared with nonmicrofluidized controls. A pressure-dependent increase in exit temperature was observed for all microfluidized samples, with inactivation of alkaline phosphatase in raw and thermized samples at 125 and 170 MPa. Microfluidization of all samples under the 4 inlet temperature and processing pressure conditions resulted in a stable emulsion of fat droplets ranging from 0.390 to 0.501 μm, compared with 7.921 (control) and 4.127 (homogenized control) μm. Confocal imaging showed coalescence of scattered fat agglomerates 1 to 3 μm in size during the first 24 h. We found no changes in fat, lactose, ash content or pH, indicating the major components of milk remained unaffected by microfluidization. However, the apparent protein content was reduced from 3.1 to 2.2%, likely a result of near infrared spectroscopy improperly identifying the micellar fragments embedded into the fat droplets. Microbiology results indicated a decrease in mesophilic aerobic and psychrophilic milk microflora with increasing temperature and pressure, suggesting that microfluidization may eliminate bacteria. The viscosities of milk samples were similar but tended to be higher after treatment at 54°C and 125 or 170 MPa. These samples exhibited the longest coagulation times and the weakest gel firmness, indicating that formation of the casein matrix, a critical step in the production of cheese, was affected. Low temperature and pressure (42°C/75 MPa) exhibited similar coagulation properties to controls. The results suggest that microfluidization at lower pressures may be used to manufacture high-moisture cheese with altered texture whereas higher pressures may result in novel dairy ingredients.
Journal of Dairy Science | 2017
D.L. Van Hekken; M.H. Tunick; John A. Renye; P.M. Tomasula
Development of reduced-sodium cheese to meet the demands of consumers concerned about sodium levels in their diet is challenging when a high-moisture, higher pH, fresh cheese, such as Queso Fresco (QF), depends on its NaCl salt content to obtain its signature flavor and quality traits. This study evaluated the effects of different Na-K salt blends on the compositional, sensorial, microbial, functional, and rheological properties of QF stored for up to 12 wk at 4°C. Queso Fresco curd from each vat was divided into 6 portions and salted with different blends of NaCl-KCl (Na-K, %): 0.75-0.75, 1.0-0.5, 1.0-1.0, 1.0-1.3, 1.0-1.5, and 2.0-0 (control). Within this narrow salt range (1.5 to 2.5% total salt), the moisture, protein, fat, and lactose levels; water activity; pH; and the textural and rheological properties were not affected by salt treatment or aging. The total salt, sodium, potassium, and ash contents reflected the different Na-K ratios added to the QF. Total aerobic microbial count, overall proteolysis, the release of casein phosphopeptides, and the level of volatile compounds were affected by aging but not by the salt treatment. Only the 1.0-1.3 and 1.0-1.5 Na-K cheeses had sensory saltiness scores similar to that of the 2.0-0 Na-K control QF. Loss of free serum from the cheese matrix increased steadily over the 12 wk, with higher losses found in QF containing 1.5% total salt compared with the higher Na-K blends. In conclusion, KCl substitution is a viable means for reduction of sodium in QF resulting in only minor differences in the quality traits, and levels of 1.0-1.3 and 1.0-1.5 Na-K are recommended to match the saltiness intensity of the 2.0-0 Na-K control. The findings from this study will aid cheese producers in creating reduced-sodium QF for health-conscious consumers.
Journal of Dairy Science | 1994
M.H. Tunick