M. Harnik
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Harnik.
Enzyme and Microbial Technology | 1990
S. Abramov; Y. Aharonowitz; M. Harnik; Raphael Lamed; Amihay Freeman
The development of a continuous anaerobic process for stereospecific Δ4-3-keto-steroid reduction by immobilized Clostridium paraputrificum cells cells is described. Following a study on conditions for cell growth and sporulation, spores of C. paraputrificum were aseptically immobilized in PAAH beads. Conditions for cell growth and induction in the immobilized state were determined, as well as the medium composition required to maintain a stabilized immobilized cell population. The effect of the concentration of ethylene glycol added as selected cosolvent on reaction kinetics, substrate solubility, specific activity, and cell growth, was investigated. A 10% (v/v) cosolvent input provided maximal activity along with enhanced solubility of the steroidal substrate. It was shown that cell growth was enhanced in the presence of the added cosolvent in addition to its effect on substrate solubility and enzymic activity. The immobilized cells readily performed Δ4, as well as 3-keto steroid reduction of several steroids, including ADD, AD, 16-dehydroprogesterone, progesterone, and hydrocortisone. It was shown that repeated batch-wise reduction cycle—in the presence of the cosolvent—resulted in rapid loss of activity, while the continuous uninterrupted process permitted the attaining of full bioconversion level, maintained stable for at least the period of 5 days of continuous operation tested.
Steroids | 1991
Yoshiyu Takeda; Kathalina Bige; Tom Iwuanyanwu; Sabina Lewicka; P. Vecsei; Saleh Abdelhamid; M. Harnik
18,19-Dihydroxycorticosterone (18,19(OH)2-B) and 18-hydroxy-19-norcorticosterone (18-OH-19-nor-B) measurements were carried out on the urine of patients with primary aldosteronism (PA), essential hypertension (EHT), and liver cirrhosis with (LC, SA (+)) and without (LC, SA (-)) aldosteronism. The separation of these steroids was performed by extraction and high-performance liquid chromatography followed by radioimmunoassay (RIA) with specific antibodies prepared in our laboratory. 18,19(OH)2-B excretion was elevated in patients with PA (24 +/- 5.9 [+/- SE] micrograms/24 hr; n = 15) and LC, SA (+) (83 +/- 9.4 micrograms/24 hr; n = 8). Values in LC, SA (-) (3.1 +/- 1.2 micrograms/24 hr; n = 8) and in EHT (3.7 +/- 0.4 micrograms/24 hr; n = 42) were found to be similar to those in normal subjects (5.5 +/- 0.9 micrograms/24 hr; n = 30). The values of urinary 18-OH-19-nor-B in PA and LC, SA (+) were higher than in LC, SA (-) EHT and normal subjects (P less than 0.05). Values in the latter three groups, as compared with each other, did not show significant alterations. Nothing is known about the biologic relevance of 18,19(OH)2-B and very little about that of 18-OH-19-nor-B, but the latter steroid seems to potentiate experimental renal hypertension. One can speculate about possible roles of both steroids as precursors of other steroids, e.g., the biologically potent mineralocorticoid 19-noraldosterone. The data obtained suggest that it is not relevant to measure the urinary levels of either steroid in these clinical syndromes.
Journal of Steroid Biochemistry | 1986
M. Harnik; Yoel Kashman; Miriam Cojocaru; David J. Morris
19-Noraldosterone has been prepared for biological re-evaluation through an extension of a recent synthesis of 19-hydroxyaldosterone: 21-hydroxy-6 beta,19-epoxy-4-pregnene-3,20-dion-20-ethylene ketal-18,11 beta-lactone (1a) was acetylated and then reduced with zinc-acetic acid-isopropanol to the 19-ol 2b. Treatment with sodium acetate transposed the double bond into conjugation, and 2a thus obtained was oxidized with pyridinium chlorochromate to the 19-oxo compound 3. Decarbonylation to the 19-nor lactone 4 was effected by heating with alkali. Protection of the C-3 carbonyl was achieved by ketalization and the resulting mixture of the 5-ene and 5(10)-ene ketals 5 was reduced with DIBAH to the corresponding mixture of the hemiacetals 6. Acid hydrolysis of the latter afforded 19-noraldosterone (7), accompanied by the 18,21-anhydro ketal 8. 19-Noraldosterone in the solid state exists in the cyclic form 7b, which appears to be also the predominant isomer present under conditions of mass spectrometry. [1H]NMR indicates that in chloroform 19-noraldosterone exists mostly as an equilibrium mixture of structures 7a and 7b. Sodium periodate oxidation furnished the gamma-etiolactone 9, confirming the 17 beta configuration in 7.
Steroids | 1985
David J. Morris; Jane Gorsline; Patrick A. Tresco; M. Harnik
The relative hypertensinogenic potencies of recently synthesized 19-nor-aldosterone and its precursor 19-OH-aldosterone were assessed in comparison to that of aldosterone (Aldo) in young (6-week-old) adrenalectomized (ADX) spontaneously hypertensive rats (SHR). Infusion of 19-nor-aldosterone for 2 weeks by Alza mini-osmotic pumps caused significant, dose-dependent increases in the systolic blood pressure (BP) of young ADX SHR; dosages of 0.1 and 0.5 microgram/day raised the BP from 127 +/- 2 mmHg to 164 +/- 9 and 180 +/- 11 mmHg, respectively. During this period, control ADX SHR receiving vehicle only remained normotensive. Similar increases in BP were seen only with infusion of slightly higher dosages of Aldo (0.5 and 1.0 micrograms/day). In contrast, 19-OH-aldosterone infused at higher dosages (10 or 25 micrograms/day) caused little change in BP of ADX SHR. Full suppression of plasma renin activity (PRA) was observed with 0.1 and 0.5 microgram/day 19-nor-aldosterone, whereas Aldo caused similar decreases in PRA only at dosages of 0.5 microgram/day and higher. Interestingly, although infusions of 19-OH-aldosterone did not cause a significant change in BP, these dosages (10 and 25 micrograms/day) significantly suppressed PRA. These studies which show that 19-nor-aldosterone is equipotent to Aldo, and perhaps slightly more active in ADX SHR, indicate that 19-nor-aldosterone is a potentially important hypertensinogenic steroid.
Journal of Steroid Biochemistry | 1985
M. Harnik; Yoel Kashman; Y. Aharonowitz; David J. Morris
19-Hydroxyaldosterone (20) and the 3 beta-hydroxy-5-ene analog of aldosterone (HAA) (8) were synthesized from 21-acetoxy-4-pregnene-3,20-dion-20-ethylene ketal-18, 11 beta-lactone (2) as follows: the double bond was transposed from the 4,5 to the 5,6-position by enol acetylation to 3, followed by sodium borohydride reduction. Further reduction of the resulting lactone 4a with diisobutylaluminum hydride (DIBAH) furnished the 20-ketal of HAA 6, from which free HAA (8) and the 18,21-anhydro compound 7 were obtained by acid treatment. The [1H]NMR spectrum of 8 in CDCl3 showed it to be a mixture of two isomeric forms. Correlation with the known aldosterone-gamma-etiolactone (10) was established by periodate oxidation of HAA to the corresponding etiolactone 9 followed by chromic acid oxidation. The preparation of 20 was next effected in the following manner: the diacetate 4b was converted into the 6 beta, 19-oxido compound 13b by addition of hypobromous acid followed by the hypoiodite reaction of the bromohydrin 11. Mild saponification of 13b lead to the corresponding diol 13a, and was followed by selective oxidation to the 3-one 14, readily dehydrobrominated to 15a. Reductive ring opening furnished a mixture of the 19,21-diol 16a and its 5-ene isomer 16b, which was directly converted to the diketal 17. Reduction with DIBAH gave the hemiacetal 18, and hydrolysis of the latter 19-hydroxyaldosterone (20) as a water-soluble solid, accompanied by the 18,21-anhydro compound 19. 19-Hydroxyaldosterone exists in CHCl3 and water as a mixture of mainly two isomers. Periodate oxidation furnished the etiolactone 21. Preliminary results indicate that HAA and 19-hydroxyaldosterone are active mineralocorticoids in the Kagawa bioassay and short-circuit current measurements.
Journal of Immunoassay | 1990
Fidi Schwartz; Eran Hadas; M. Harnik; Beka Solomon
Two enzyme-linked immunosorbent assays were established and compared for the estimation of plasma aldosterone. In the first method immobilized aldosterone-protein complexes on the ELISA plates compete with aldosterone to be determined for the binding of certain amount of anti-aldosterone antibodies. The sensitivity of this method depends on the protein carrier used to conjugate with aldosterone. In the second method, anti-aldosterone antibodies adsorbed on ELISA plates compete for binding of known amount of the enzyme-labeled aldosterone and aldosterone to be determined. The highly specific rabbit anti-aldosterone antibodies were obtained by injection of aldosterone-oxime thyroglobulin. The detection limit of aldosterone in both methods ranged between 2-20 pg. The proposed assays are suitable for the determination of aldosterone in biological fluids compared with other reported ELISA assays, as well as with RIA.
Journal of Steroid Biochemistry | 1985
Eduardo N. Cozza; Gerardo Burton; Nora R. Ceballos; Carlos P. Lantos; M. Harnik; A.I. Scott
Samples containing as precursors either 18-hydroxycorticosterone (18-OH-B) in its M form, or this converted to less polar forms at pH 2 (ACM), or M or ACM enclosed in liposomes from adrenal lipids were incubated at pH 7.4, 4.8 or 3.3 in the presence or absence of quartered rat adrenals for 1 and 2 h. Optimal (10%) yields of aldosterone were obtained when (a) ACM was incubated at pH 4.8 and (b) M enclosed in liposomes was suspended in buffer and shaken without enzyme at pH 3.3. When conditions (a) were supplemented with malate and NADP, 16% of ACM was converted to aldosterone. ACM contained 80% of a fraction which, according to 13C NMR spectroscopy, was identical to 18-deoxyaldosterone (18-DAL). Experiments in which radioactivity from corticosterone (B) or M was trapped by radioinert M or 18-DAL disclosed a pathway comprising sequentially B, 18-OH-B, 18-DAL and aldosterone, and the combined evidence of this work, an enzymatic hydroxylation of 18-DAL to aldosterone.
Steroids | 1989
David J. Morris; Graham W. Souness; Nora A. Saccoccio; M. Harnik
Infusion of Ring-A-reduced metabolites of aldosterone in adrenalectomized male rats for 4 days revealed that 5 alpha-Ring-A-reduced derivatives, 5 alpha-dihydroaldosterone (5 alpha-DHAldo; 2.5-5.0 micrograms/day), 3 alpha,5 alpha-tetrahydroaldosterone (3 alpha,5 alpha-THAldo; 5-25 micrograms/day), and 3 beta,5 alpha-THAldo (50-175 micrograms/day) possessed intrinsic Na+-retaining activity. The same infusions of 5 alpha-DHAldo, 3 alpha,5 alpha-THAldo, and 3 beta,5 alpha-THAldo, also lowered the urinary excretion of potassium. The 5 beta-Ring-A-reduced derivative 3 alpha,5 beta-THAldo did not demonstrate either of these biological properties. In another set of experiments, on the fourth day of infusion, aldosterone (0.1 microgram/rat) was administered acutely subcutaneously; none of the Ring-A-reduced derivatives altered the Na+-retaining activity of aldosterone. However, in a dose-dependent manner, both 3 alpha,5 alpha-THAldo and 3 beta,5 alpha-THAldo blunted the urinary K+-secretory effect of aldosterone; low dosages of 5 alpha-DHAldo and larger dosages of 3 alpha,5 beta-THAldo did not. Thus, the 5 alpha-reduced derivatives of aldosterone not only lowered urinary Na+ and K+ excretion in their own right, but two of them blunted the kaliuretic response of the parent mineralocorticoid, aldosterone. Further experiments will be required to determine whether these aldosterone metabolites are further metabolized or interconverted during the expression of the regulatory properties described here and whether these properties are physiologically relevant.
Steroids | 1986
M. Harnik; S. Carmely; Miriam Cojocaru; Yoel Kashman
A four-step synthesis of 18,19-dihydroxycorticosterone 5c, starting with 19,21-dihydroxy-3,20-dioxopregn-5-ene-18,11 beta-lactone-di-(ethylene ketal) 2, is presented. Reduction of 2 with sodium aluminum bis-(methoxyethoxy)hydride gave 11 beta,18,19,21-tetrahydroxy-pregn-5-ene-3,20-dione-di-(ethylene ketal) 3a. Acetylation furnished the corresponding 18,19,21-triacetate 3b, which on treatment with a mixture of perchloric and acetic acids gave 18,19-dihydroxycorticosterone 18,19,21-triacetate 4b. Mild saponification yielded the title compound which, on the basis of ir and nmr spectra, exists as one C-20 isomer of the hemiacetal structure 5c. Periodate oxidation of 5c gave the expected 11 beta, 19-dihydroxy-3-oxoandrost-4-ene-17 beta, 18-carbolactone 6b.
Steroids | 1989
M. Harnik; Yoel Kashman; Miriam Cojocaru; Sabina Lewicka; P. Vecsei
18,21-Anhydroaldosterone 8, 18,21-anhydro-19-noraldosterone 9, and 3 alpha, 5 beta-tetrahydro-18,21-anhydro-19-noraldosterone 13, which may be present in acid-processed urine, were prepared by cleaving their 20-ketal derivatives 2, 3, and 12 with hot mineral acid. Compounds 8 and 9 were also made by direct dehydration of aldosterone 5 and 19-noraldosterone 10 in good yield. The reverse ring opening of 8 to 5 could be carried out in moderate yield with an acetic acid-acetic anhydride-perchloric acid mixture, while an analogous ring opening of 9 gave only a poor yield of 10.