M. Haverkorn
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Haverkorn.
Nature | 2013
E. Carretti; Roland M. Crocker; Lister Staveley-Smith; M. Haverkorn; C. R. Purcell; B. M. Gaensler; G. Bernardi; M. J. Kesteven; S. Poppi
The nucleus of the Milky Way is known to harbour regions of intense star formation activity as well as a supermassive black hole. Recent observations have revealed regions of γ-ray emission reaching far above and below the Galactic Centre (relative to the Galactic plane), the so-called ‘Fermi bubbles’. It is uncertain whether these were generated by nuclear star formation or by quasar-like outbursts of the central black hole and no information on the structures’ magnetic field has been reported. Here we report observations of two giant, linearly polarized radio lobes, containing three ridge-like substructures, emanating from the Galactic Centre. The lobes each extend about 60 degrees in the Galactic bulge, closely corresponding to the Fermi bubbles, and are permeated by strong magnetic fields of up to 15 microgauss. We conclude that the radio lobes originate in a biconical, star-formation-driven (rather than black-hole-driven) outflow from the Galaxy’s central 200 parsecs that transports a huge amount of magnetic energy, about 1055 ergs, into the Galactic halo. The ridges wind around this outflow and, we suggest, constitute a ‘phonographic’ record of nuclear star formation activity over at least ten million years.
The Astrophysical Journal | 2011
C. L. Van Eck; Jo-Anne Brown; J. M. Stil; K. Rae; Shude Mao; B. M. Gaensler; Anvar Shukurov; A. R. Taylor; M. Haverkorn; Philipp P. Kronberg; N. M. McClure-Griffiths
We have determined 194 Faraday rotation measures (RMs) of polarized extragalactic radio sources using new, multi-channel polarization observations at frequencies around 1.4 GHz from the Very Large Array in the Galactic plane at 17° ≤ l ≤ 63° and 205° ≤ l ≤ 253°. This catalog fills in gaps in the RM coverage of the Galactic plane between the Canadian Galactic Plane Survey and Southern Galactic Plane Survey. Using this catalog we have tested the validity of recently proposed axisymmetric and bisymmetric models of the large-scale (or regular) Galactic magnetic field, and found that of the existing models we tested, an axisymmetric spiral model with reversals occurring in rings (as opposed to along spiral arms) best matched our observations. Building on this, we have performed our own modeling, using RMs from both extragalactic sources and pulsars. By developing independent models for the magnetic field in the outer and inner Galaxy, we conclude that in the inner Galaxy, the magnetic field closely follows the spiral arms, while in the outer Galaxy, the field is consistent with being purely azimuthal. Furthermore, the models contain no reversals in the outer Galaxy, and together seem to suggest the existence of a single reversed region that spirals out from the Galactic center.
Publications of the Astronomical Society of Australia | 2013
R. P. Norris; J. Afonso; David Bacon; R. Beck; M. E. Bell; R. J. Beswick; Philip Best; Sanjay Bhatnagar; Annalisa Bonafede; G. Brunetti; Tamas Budavari; R. Cassano; James J. Condon; C. M. Cress; Arwa Dabbech; Ilana J. Feain; R. P. Fender; C. Ferrari; B. M. Gaensler; G. Giovannini; M. Haverkorn; George Heald; Kurt van der Heyden; Andrew M. Hopkins; M. J. Jarvis; M. Johnston-Hollitt; Roland Kothes; Huib Jan van Langevelde; Joseph Lazio; Minnie Y. Mao
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
Monthly Notices of the Royal Astronomical Society | 2016
W. L. Williams; R. J. van Weeren; Huub Röttgering; Philip Best; T. J. Dijkema; F. de Gasperin; M. J. Hardcastle; George Heald; I. Prandoni; J. Sabater; T. W. Shimwell; C. Tasse; I. van Bemmel; M. Brüggen; G. Brunetti; John Conway; T. A. Enßlin; D. Engels; H. Falcke; C. Ferrari; M. Haverkorn; N. Jackson; M. J. Jarvis; A. D. Kapińska; E. K. Mahony; G. K. Miley; L. K. Morabito; Raffaella Morganti; E. Orru; S. S. Sridhar
We present the first wide area (19 deg(2)), deep (a parts per thousand 120-150 mu Jy beam(-1)), high-resolution (5.6 x 7.4 arcsec) LOFAR High Band Antenna image of the Bootes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg(2), with a peak flux density threshold of 5 sigma. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
Astronomy and Astrophysics | 2017
T. W. Shimwell; Huub Röttgering; Philip Best; W. L. Williams; T. J. Dijkema; F. de Gasperin; M. J. Hardcastle; George Heald; D. N. Hoang; A. Horneffer; H. T. Intema; E. K. Mahony; S. Mandal; A. P. Mechev; L. K. Morabito; J. B. R. Oonk; D. Rafferty; J. Sabater; C. Tasse; R. J. van Weeren; M. Brüggen; G. Brunetti; K. T. Chyży; John Conway; M. Haverkorn; N. Jackson; M. J. Jarvis; John McKean; G. K. Miley; Raffaella Morganti
The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120-168 MHz imaging survey that will eventually cover the entire northern sky. Each of the 3170 pointings will be observed for 8 h, which, at most declinations, is sufficient to produce ~5? resolution images with a sensitivity of ~100 ?Jy/beam and accomplish the main scientific aims of the survey, which are to explore the formation and evolution of massive black holes, galaxies, clusters of galaxies and large-scale structure. Owing to the compact core and long baselines of LOFAR, the images provide excellent sensitivity to both highly extended and compact emission. For legacy value, the data are archived at high spectral and time resolution to facilitate subarcsecond imaging and spectral line studies. In this paper we provide an overview of the LoTSS. We outline the survey strategy, the observational status, the current calibration techniques, a preliminary data release, and the anticipated scientific impact. The preliminary images that we have released were created using a fully automated but direction-independent calibration strategy and are significantly more sensitive than those produced by any existing large-Area low-frequency survey. In excess of 44 000 sources are detected in the images that have a resolution of 25?, typical noise levels of less than 0.5 mJy/beam, and cover an area of over 350 square degrees in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00?00? to 57°00?00?).
Journal of Astrophysics and Astronomy | 2011
Huub Röttgering; J. Afonso; Peter D. Barthel; F. Batejat; Philip Best; A. Bonafede; M. Brüggen; G. Brunetti; K. T. Chyży; John Conway; Francesco de Gasperin; C. Ferrari; M. Haverkorn; George Heald; M. Hoeft; N. Jackson; M. J. Jarvis; Louise Ker; M. D. Lehnert; G. Macario; John McKean; George H. Miley; Raffaella Morganti; Tom Oosterloo; E. Orru; R. Pizzo; D. A. Rafferty; A. Shulevski; C. Tasse; Ilse Marina van Bemmel
At very low frequencies, the new pan-European radio telescope LOFAR is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. The revolutionary APERTIF- phased arrays that are about to be installed on the Westerbork radio telescope (WSRT) will dramatically increase the survey speed for the WSRT. Combined surveys with these two facilities will deeply chart the northern sky over almost two decades in radio frequency from ∼15 up to 1400 MHz. Here we briefly describe some of the capabilities of these new facilities and what radio surveys are planned to study fun-damental issues related to the formation and evolution of galaxies and clusters of galaxies. In the second part we briefly review some recent observational results directly showing that diffuse radio emission in clusters traces shocks due to cluster mergers. As these diffuse radio sources are relatively bright at low frequencies, LOFAR should be able to detect thousands of such sources up to the epoch of cluster formation. This will allow addressing many question about the origin and evolution of shocks and magnetic fields in clusters. At the end we briefly review some of the first and very preliminary LOFAR results on clusters.
Astronomy and Astrophysics | 2003
M. Haverkorn; P. Katgert; A. G. de Bruyn
Angular power spectra and structure functions of the Stokes parameters Q and U and polarized intensity P are derived from three sets of radio polarimetric observations. Two of the observed fields have been studied at multiple frequencies, allowing determination of power spectra and structure functions of rotation measure RM as well. The third field extends over a large part of the northern sky, so that the variation of the power spectra over Galactic latitude and longitude can be studied. The power spectra of Q and U are steeper than those of P, probably because a foreground Faraday screen creates extra structure in Q and U, but not in P. The extra structure in Q and U occurs on large scales, and therefore causes a steeper spectrum. The derived slope of the power spectrum of P is the multipole spectral index alpha(P), and is consistent with earlier estimates. The multipole spectral index alpha(P) decreases with Galactic latitude (i.e. the spectrum becomes flatter), but is consistent with a constant value over Galactic longitude. Power spectra of the rotation measure RM show a spectral index alpha(RM) approximate to 1, while the structure function of RM is approximately flat. The structure function is flatter than earlier estimates from polarized extragalactic sources, which could be due to the fact that extragalactic source RM probes the complete line of sight through the Galaxy, whereas as a result of depolarization diffuse radio polarization only probes the nearby ISM.
The Astrophysical Journal | 2012
Shude Mao; N. M. McClure-Griffiths; B. M. Gaensler; Jo-Anne Brown; C. L. Van Eck; M. Haverkorn; Philipp P. Kronberg; J. M. Stil; Anvar Shukurov; A. R. Taylor
We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) towards 641 polarized extragalactic radio sources in the Galactic longitude range 100 117 , within 30 of the Galactic plane. Forjbj < 15 , we observe a symmetric RM distribution about the Galactic plane. This is consistent with a disk field in the Perseus arm of even parity across the Galactic midplane. In the range 15 <jbj < 30 , we find median rotation measures of -15 4 rad m -2 and -62 5 rad m -2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at largerjbj. This is consistent with an azimuthal magnetic field of strength 2 G (7 G) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51. Subject headings: magnetic fields —Faraday rotation—polarization—Galaxy: halo
Astronomy and Astrophysics | 2015
Vibor Jelić; A. G. de Bruyn; V. N. Pandey; M. Mevius; M. Haverkorn; M. A. Brentjens; Léon V. E. Koopmans; Saleem Zaroubi; F. B. Abdalla; K. M. B. Asad; S. Bus; E. Chapman; B. Ciardi; Elizabeth R. Fernandez; Abhik Ghosh; G. Harker; Ilian T. Iliev; Hannes Jensen; S. Kazemi; Garrelt Mellema; A. R. Offringa; A. H. Patil; H. K. Vedantham; S. Yatawatta
Aims. This study aims to characterize linear polarization structures in LOFAR observations of the interstellar medium (ISM) in the 3C 196 field, one of the primary fields of the LOFAR-Epoch of Reionization key science project. Methods. We have used the high band antennas (HBA) of LOFAR to image this region and rotation measure (RM) synthesis to unravel the distribution of polarized structures in Faraday depth. Results. The brightness temperature of the detected Galactic emission is 5−15 K in polarized intensity and covers the range from –3 to +8 rad m-2 in Faraday depth. The most interesting morphological feature is a strikingly straight filament at a Faraday depth of +0.5 rad m-2 running from north to south, right through the centre of the field and parallel to the Galactic plane. There is also an interesting system of linear depolarization canals conspicuous in an image showing the peaks of Faraday spectra. We used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. For the first time, we see some common morphology in the RM cubes made at 150 and 350 MHz. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies and previous LOFAR observations. Based on our results, we determined physical parameters of the ISM and proposed a simple model that may explain the observed distribution of the intervening magneto-ionic medium. Conclusions. The mean line-of-sight magnetic field component, B∥, is determined to be 0.3 ± 0.1 μG and its spatial variation across the 3C 196 field is 0.1 μG. The filamentary structure is probably an ionized filament in the ISM, located somewhere within the Local Bubble. This filamentary structure shows an excess in thermal electron density (neB∥> 6.2 cm-3μG) compared to its surroundings.
Space Science Reviews | 2013
M. Haverkorn; Steven R. Spangler
We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The “signal generators” of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurements provide unique information on turbulence in the ISM as well as the mean plasma properties such as density and magnetic field strength. Radio propagation observations can provide input to the major contemporary questions on the nature of ISM turbulence, such as its dissipation mechanisms and the processes responsible for generating the turbulence on large spatial scales. Measurements of the large scale Galactic magnetic field via Faraday rotation provide unique observational input to theories of the generation of the Galactic field.
Collaboration
Dive into the M. Haverkorn's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs