M. I. Hiriart
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. I. Hiriart.
Reproduction | 2015
L. N. Moro; M. I. Hiriart; C. Buemo; J. Jarazo; Adrián Sestelo; D Veraguas; Lleretny Rodriguez-Alvarez; D. Salamone
The aim of this study was to evaluate the capacity of domestic cat (Dc, Felis silvestris) oocytes to reprogram the nucleus of cheetah (Ch, Acinonyx jubatus) cells by interspecies SCNT (iSCNT), by using embryo aggregation. Dc oocytes were in vitro matured and subjected to zona pellucida free (ZP-free) SCNT or iSCNT, depending on whether the nucleus donor cell was of Dc or Ch respectively. ZP-free reconstructed embryos were then cultured in microwells individually (Dc1X and Ch1X groups) or in couples (Dc2X and Ch2X groups). Embryo aggregation improved in vitro development obtaining 27.4, 47.7, 16.7 and 28.3% of blastocyst rates in the Dc1X, Dc2X, Ch1X and Ch2X groups, respectively (P<0.05). Moreover, aggregation improved the morphological quality of blastocysts from the Dc2X over the Dc1X group. Gene expression analysis revealed that Ch1X and Ch2X blastocysts had significantly lower relative expression of OCT4, CDX2 and NANOG than the Dc1X, Dc2X and IVF control groups. The OCT4, NANOG, SOX2 and CDX2 genes were overexpressed in Dc1X blastocysts, but the relative expression of these four genes decreased in the Dc2X, reaching similar relative levels to those of Dc IVF blastocysts. In conclusion, Ch blastocysts were produced using Dc oocytes, but with lower relative expression of pluripotent and trophoblastic genes, indicating that nuclear reprogramming could be still incomplete. Despite this, embryo aggregation improved the development of Ch and Dc embryos, and normalized Dc gene expression, which suggests that this strategy could improve full-term developmental efficiency of cat and feline iSCNT embryos.
Theriogenology | 2012
R. J. Bevacqua; F. Pereyra-Bonnet; R. Olivera; M. I. Hiriart; P. Sipowicz; R. Fernandez-Martin; M. Radrizzani; D. Salamone
The objective was to evaluate the effects of cell cycle inhibitors (6-dimethylaminopurine [DMAP], and dehydroleukodine [DhL]) on transgene expression efficiency and on mosaic expression patterns of IVF bovine zygotes cytoplasmically injected with oolema vesicles coincubated with transgene. The DNA damage induced by the transgene or cell cycle inhibitors was measured by detection of phosphorylated histone H2AX foci presence (marker of DNA double-stranded breaks). Cloning of egfp blastomeres was included to determine continuity of expression after additional rounds of cellular division. The pCX-EGFP [enhanced green fluorescent protein gene (EGFP) under the chimeric cytomegalovirus IE-chicken-β-actin enhancer promoter control] gene plasmid (50 ng/μL) was injected alone (linear or circular exogenous DNA, leDNA and ceDNA, respectively) or associated with ooplasmic vesicles (leDNA-v or ceDNA-v). The effects of 2 mm DMAP or 1 μm DhL for 6 h (from 15 to 21 h post IVF) was evaluated for groups injected with vesicles. The DMAP increased (P < 0.05) egfp homogenous expression relative to transgene alone (21%, 18%, and 11% for leDNA-v + DMAP, leDNA-v, and leDNA, respectively) and also increased (P < 0.05) the phosphorylated histone H2AX foci area. Expression of egfp was higher (P < 0.05) for linear than for circular pCX-EGFP, and egfp blastocyst rates were higher (P < 0.05) for groups injected with linear transgene coincubated with vesicles than for linear transgene alone (95%, 77%, 84%, and 52% for leDNA-v + DMAP, leDNA-v + DhL, leDNA-v, and leDNA, respectively). Moreover, DMAP tended to improve egfp blastocysts rates for both circular and linear transgenes. Based on fluorescent in situ hybridization (FISH) analysis, there was evidence of integration in egfp embryos. Finally, clones derived from leDNA-v + DMAP had the highest egfp expression rates (96%, 65%, and 65% for leDNA-v + DMAP, leDNA-v, and leDNA, respectively). Transgenesis by cytoplasmic injection of leDNA-v + DMAP is a promising alternative for transgenic animal production.
Reproduction in Domestic Animals | 2015
L. N. Moro; J. Jarazo; C. Buemo; M. I. Hiriart; A Sestelo; D. Salamone
The aim of this study was to evaluate three different cloning strategies in the domestic cat (Felis silvestris) and to use the most efficient to generate wild felid embryos by interspecific cloning (iSCNT) using Bengal (a hybrid formed by the cross of Felis silvestris and Prionailurus bengalensis) and tiger (Panthera tigris) donor cells. In experiment 1, zona-free (ZP-free) cloning resulted in higher fusion and expanded blastocyst rates with respect to zona included cloning techniques that involved fusion or injection of the donor cell. In experiment 2, ZP-free iSCNT and embryo aggregation (2X) were assessed. Division velocity and blastocyst rates were increased by embryo aggregation in the three species. Despite fewer tiger embryos than Bengal and cat embryos reached the blastocyst stage, Tiger 2X group increased the percentage of blastocysts with respect to Tiger 1X group (3.2% vs 12.1%, respectively). Moreover, blastocyst cell number was almost duplicated in aggregated embryos with respect to non-aggregated ones within Bengal and tiger groups (278.3 ± 61.9 vs 516.8 ± 103.6 for Bengal 1X and Bengal 2X groups, respectively; 41 vs 220 ± 60 for Tiger 1X and Tiger 2X groups, respectively). OCT4 analysis also revealed that tiger blastocysts had higher proportion of OCT4-positive cells with respect to Bengal blastocysts and cat intracytoplasmic sperm injection blastocysts. In conclusion, ZP-free cloning has improved the quality of cat embryos with respect to the other cloning techniques evaluated and was successfully applied in iSCNT complemented with embryo aggregation.
Theriogenology | 2013
M. I. Hiriart; R. J. Bevacqua; N. G. Canel; R. Fernandez-Martin; D. Salamone
Embryo disaggregation allows the production of two to four identical offspring from a single cow embryo. In addition, embryo complementation has become the technique of choice to demonstrate the totipotency of embryonic stem cells and induced pluripotent stem cells. Therefore, the aim of this study was to generate a new and simple method by aggregation in the well-of-the-well system to direct each single enhanced green fluorescent protein (egfp) eight-cell blastomere derived from bovine in vitro fertilization embryos to the inner cell mass (ICM) of chimeras produced with fused and asynchronic embryos. To this end, the best conditions to generate in vitro fertilization-fused embryos were determined. Then, the fused (F) and nonfused (NF) embryos were aggregated in two distinct conditions: synchronically (S), with both transgenic and F embryos produced on the same day, and asynchronically (AS), with transgenic embryos produced one day before F embryos. The highest fusion and blastocysts rates were obtained with two pulses of 40 V. The 2ASF and 2ASNF groups showed the best number of blastocysts expressing the EGFP protein (48% and 41%, respectively). Furthermore, the 2ASF group induced the highest localization rates of the egfp-expressing blastomere in the ICM (6/13, 46% of ICM transgene-expressing blastocysts). This technique will have great application for multiplication of embryos of high genetic value or transgenic embryos and also with the generation of truly bovine embryonic stem cells and induced pluripotent stem cells.
PLOS ONE | 2016
C. Buemo; A. Gambini; L. N. Moro; M. I. Hiriart; R. Fernandez-Martin; Philippe Collas; D. Salamone
In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.
Cell Division | 2012
N. G. Canel; R. J. Bevacqua; M. I. Hiriart; D. Salamone
BackgroundMicrocell-mediated chromosome transfer (MMCT) was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes.MethodsMicronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+)] or not [Micronucleus- injected (−)] to a transgene (50 ng/μl pCX-EGFP) during 5 min. Enucleated oocytes [Enucleated (+)] and parthenogenetic [Parthenogenetic (+)] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−)] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−), Parthenogenetic (−) and in vitro fertilized (IVF) embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05).ResultsAll the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had fewer than 15 chromosomes per blastomere (from 1 to 13), while none of the IVF and Parthenogenetic controls showed less than 30 chromosomes per spread.ConclusionsWe have developed a new method to replicate somatic micronuclei, by using the replication machinery of the oocyte. This could be a useful tool for making chromosome transfer, which could be previously targeted for transgenesis.
Theriogenology | 2013
R. J. Bevacqua; N. G. Canel; M. I. Hiriart; P. Sipowicz; G.T. Rozenblum; A. Vitullo; M. Radrizzani; R. Fernandéz Martín; D. Salamone
Theriogenology | 2017
N. G. Canel; R. J. Bevacqua; M. I. Hiriart; Natana Chaves Rabelo; Luiz Sergio de Almeida Camargo; M. Romanato; Lucrecia Calvo; D. Salamone
Theriogenology | 2016
Ana P. Alessio; A. Fili; Wiebke Garrels; Diego O. Forcato; María F. Olmos Nicotra; Ana C. Liaudat; R. J. Bevacqua; Virginia Savy; M. I. Hiriart; Thirumala R. Talluri; Jesse B. Owens; Zoltán Ivics; D. Salamone; Stefan Moisyadi; Wilfried August Kues; Pablo Bosch
Reproduction, Fertility and Development | 2016
A. Fili; Ana P. Alessio; Wiebke Garrels; Diego O. Forcato; M.F. Olmos Nicotra; Ana C. Liaudat; R. J. Bevacqua; V. Savy; M. I. Hiriart; Nancy Rodríguez; Thirumala Rao Talluri; Zoltán Ivics; D. Salamone; Wilfried August Kues; Pablo Bosch