M. I. Núñez
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. I. Núñez.
Radiotherapy and Oncology | 1996
M. I. Núñez; Trevor J. McMillan; M. T. Valenzuela; J. M. Ruiz de Almodóvar; Vicente Pedraza
The prevailing hypothesis on the mechanism of radiation-induced cell killing identifies the genetic material deoxyribonucleic acid (DNA) as the most important subcellular target at biologically relevant doses. In this review we present new data and summarize the role of the DNA double-strand breaks (dsb) induced by ionizing radiation and DNA dsb rejoining as determinants of cellular radiosensitivity. When cells were irradiated at high dose-rate, two molecular end-points were identified which often correlated with radiosensitivity: (1) the apparent number of DNA dsb induced per Gy per DNA unit and (2) the half-time of the fast component of the DNA dsb rejoining kinetics. These two molecular determinants, not mutually exclusive, may be linked through a common factor such as the conformation of DNA.
British Journal of Cancer | 1996
Eva Siles; Mercedes Villalobos; M. T. Valenzuela; M. I. Núñez; A. T. Gordon; Trevor J. McMillan; Vicente Pedraza; J. M. Ruiz de Almodóvar
We examined the relationship between p53 levels before and after irradiation, radiation-induced cell cycle delays, apoptotic cell death and radiosensitivity in a panel of eight human tumour cell lines. The cell lines differed widely in their clonogenic survival after radiation, (surviving fraction at 2 Gy: SF2=0.18-0.82). Constitutive p53 protein levels varied from 2.2 +/- 0.4 to 6.3 +/- 0.3 optical density units (OD) per 10(6) cells. p53 after irradiation (6 Gy) also varied between the cell lines, ranging from no induction to a 1.6-fold increase in p53 levels 4 h after treatment. p53 function was also assessed by G1 cell cycle arrest after irradiation. The cellular response to radiation, measured as G0/G1 arrest, and the induction of apoptosis were in good agreement. However, a trace amount of DNA ladder formation was found in two cell lines lacking G1 arrest. Overall cellular radiosensitivity correlated well with the level of radiation-induced G1 arrest (correlation coefficient r=0.856; P=0.0067), with p53 constitutive levels (r=0.874, P=0.0046), and with p53 protein fold induction (r=-0.882, P=0.0038). Our data suggest that (1) the constitutive p53 level, (2) G1 arrest after irradiation, or (3) the p53 protein response to radiation may be good predictive tests for radiosensitivity in some cell types.
European Urology | 2002
M. T. Valenzuela; R Galisteo; A Zuluaga; Mercedes Villalobos; M. I. Núñez; Francisco Javier Oliver; J. M. Ruiz de Almodóvar
Objective: This study was undertaken to investigate whether hypermethylation in p16 INK4a gene promoter could serve as plasma biomarker of bladder cancer. Methods and Patients: We examined the p16 INK4a status using methylation-specific PCR in 86 cancer patients and 49 controls (31 healthy people and 18 patients with benign urological diseases). Results: The p16 INK4a methylation was found in 22% of the serum samples and in 26% of the bladder cancer biopsies; one of them with carcinoma in situ. The presence of hypermethylated p16 INK4a in serum seems to be a product from tumour cells because a strong statistical association was found between both matched DNA signals (p < 0:0001). Using the control group, the presence of methylated p16 INK4a in the serum of individuals with suspicion of bladder cancer was found to be associated with the tumour presence (p ¼ 0:0009). Aberrant p16 INK4a methylation was also observed in one non-cancer patient, which is undergoing further assessment. Conclusions: According with our results, methylation of p16 INK4a promoter may be involved in the bladder cancer genesis and the presence of p16 INK4a methylated in serum of these patients could be useful in the cancer diagnosis with values of sensitivity, specificity and positive predictive value of 0.226, 0.950 and 0.98, respectively. These figures support the use of methylated p16 INK4a as a new class of tumour marker in bladder cancer.
British Journal of Cancer | 1995
M. I. Núñez; Mercedes Villalobos; Nicolás Olea; M. T. Valenzuela; Vicente Pedraza; Trevor J. McMillan; J. M. Ruiz de Almodóvar
Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t1/2) of rejoining ranged from 18.0 +/- 1.4 to 36.4 +/- 3.2 min (fast rejoining process) and from 1.5 +/- 0.2 to 5.1 +/- 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t1/2 of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radioresistant. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell.
British Journal of Cancer | 1994
J. M. Ruiz de Almodóvar; M. I. Núñez; Trevor J. McMillan; Nicolás Olea; C. Mort; Mercedes Villalobos; Vicente Pedraza; G. G. Steel
The role of the initial DNA double-strand breaks (dsb) as a determinant of cellular radiosensitivity was studied in human breast and bladder cancer cell lines. Cell survival was measured by monolayer colony-forming assay as appropriate and differences in radiosensitivity were seen (alpha-values ranged from 0.12 to 0.54). After pulsed-field gel electrophoresis (PFGE) the initial slopes of dose-response curves were biphasic with a flattening of the curves above 30 Gy. When the frequency of DNA dsb induction was assessed using a mathematical model based on the DNA fragment size distribution into the gel lane, we found a statistically significant relationship between the number of DNA dsb induced and the corresponding alpha-values and fraction surviving after 2Gy (P = 0.0049 and P = 0.0031 respectively). These results support the view that initial damage is a major determinant of cell radiosensitivity.
Breast Cancer Research | 2005
Escarlata López; R. Guerrero; M. I. Núñez; Rosario del Moral; Mercedes Villalobos; Joaquina Martínez-Galán; M. T. Valenzuela; José Antonio Muñoz-Gámez; Francisco Javier Oliver; David Martín-Oliva; José Mariano Ruiz de Almodóvar
IntroductionRadiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects.MethodsIntrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments.ResultsRadiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects.ConclusionAfter radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients.
BMC Cancer | 2014
Joaquina Martínez-Galán; Blanca Torres-Torres; M. I. Núñez; Jesús J. López-Peñalver; Rosario Del Moral; José Mariano Ruiz de Almodóvar; Salomón Menjón; Angel Concha; Clara Chamorro; Sandra Ríos; J.R. Delgado
BackgroundTumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients.MethodsPatients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique).ResultsOur results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively.ConclusionSilencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment.
Surgical Oncology-oxford | 2012
Francisco Artacho-Cordón; Sandra Ríos-Arrabal; P.C. Lara; A. Artacho-Cordón; Irene Calvente; M. I. Núñez
Radiotherapy is widely used in the treatment of patients with breast cancer, but ionizing radiation-induced carcinogenesis has been described in several studies. Matrix metalloproteinases (MMPs) are a wide family of proteases secreted by tumour and microenvironmental cells that are directly linked with invasion and metastasis through complete extracellular matrix (ECM) breakage. In the past decade, MMPs have been associated with other carcinogenesis steps, including tumour growth and angiogenesis promotion. Moreover, in vitro studies have demonstrated an enhanced migration, invasiveness, and angiogenic ability of cancer cells after radiation exposure through an increase in MMP activity. These findings are consistent with clinical observations of breast cancer metastases raised in bone, lung and brain tissues after radiotherapy. The aim of this review was to analyse the current state of research on MMPs and report new insights into the potential of MMP-targeted therapy in combination with radiotherapy to decrease the risk of radiation-induced second malignancies and to improve the overall survival of breast cancer patients.
Radiotherapy and Oncology | 2002
José Mariano Ruiz de Almodóvar; Damián Guirado; M. I. Núñez; Escarlata López; R. Guerrero; M. T. Valenzuela; Mercedes Villalobos; Rosario del Moral
PURPOSE The purpose of this study was to determine whether the distribution of sensitivities in breast cancer patients, measured using a DNA damage assay on lymphocytes, is likely to provide sufficient discrimination to enable the reliable identification of patients with abnormal sensitivities. MATERIAL AND METHODS Radiosensitivity (x) was assessed in 226 samples of lymphocytes from unselected women with breast cancer and was quantified as the initial number of DNA double-strand breaks (dsb) induced per Gy and per DNA unit (200 Mbp). RESULTS The existence of an inter-individual variation in the parameter (x) is described through the range (0.40-4.72 dsb/Gy/DNA unit) of values found, which have been fitted to the mathematical model defined by the log-normal distribution (mu = 0.42+/-0.03; sigma = 0.52+/-0.03; R(2)=0.9475). A total of 189 patients received radiotherapy after surgical treatment. Among them, we have detected 15 patients who developed severe skin reactions and we have compared their radiosensitivity values with the rest of patients treated. CONCLUSIONS Our results suggest that DNA initial damage measured on lymphocytes offers an approach to predict the acute response of human normal tissues prior to radiotherapy. Values of x higher than 3.20 dsb/Gy/DNA unit theoretically should correspond to the highly radio-sensitive patients. Using the experimental results, we have calculated the strength of the test by means of the area under the receiver operator characteristic curves (A(Z)) to determine whether the radiosensitivity assay can discriminate between patients according to their radiation response. The value found (A(Z)=0.675+/-0.072) is indicative of a fair-poor discriminating capacity of the test to identify the patients with higher risk of developing a severe acute reaction during the radiotherapy treatment.
Cancer Biology & Therapy | 2012
Antonia Artacho-Cordón; Francisco Artacho-Cordón; Sandra Ríos-Arrabal; Irene Calvente; M. I. Núñez
It is now widely accepted that the development and progression of a tumor toward the malignant phenotype is highly dependent on interactions between tumor cells and the tumor microenvironment. Different components of the tumor microenvironment may have stimulatory or inhibitory effects on tumor progression by regulating the gene expression repertoire in tumor cells and stromal cells. This review analyzes novel research findings on breast cancer progression, discussing acquisition of the metastatic phenotype in breast disease in relation to different aspects of cross-talk among components of the tumor microenvironment. Knowledge of the interaction of all of these factors would contribute to elucidating the mechanisms that disrupt regulatory/signaling cascades and downstream effects in breast cancer.