Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Iacobelli is active.

Publication


Featured researches published by M. Iacobelli.


Astronomy and Astrophysics | 2013

Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

C. Sotomayor-Beltran; C. Sobey; J. W. T. Hessels; G. De Bruyn; A. Noutsos; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; R. Beck; M. E. Bell; M. R. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; L. Bîrzan; A. Bonafede; F. Breitling; J. Broderick; W. N. Brouw; M. Brüggen; B. Ciardi; F. de Gasperin; R.-J. Dettmar; S. Duscha; J. Eislöffel; H. Falcke; R. A. Fallows; R. P. Fender; C. Ferrari

Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.


Astronomy and Astrophysics | 2014

LOFAR tied-array imaging of Type III solar radio bursts

D. E. Morosan; Peter T. Gallagher; Pietro Zucca; R. A. Fallows; Eoin P. Carley; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; J. Magdalenić; C. Vocks; Hamish A. S. Reid; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; Jaap D. Bregman; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; F. de Gasperin

The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.


Journal of Instrumentation | 2015

Calibrating the absolute amplitude scale for air showers measured at LOFAR

A. Nelles; J.R. Hörandel; T. Karskens; M. Krause; S. Buitink; A. Corstanje; J. E. Enriquez; M. Erdmann; H. Falcke; A. Haungs; R. Hiller; T. Huege; R. Krause; K. Link; M. J. Norden; J. P. Rachen; L. Rossetto; P. Schellart; Olaf Scholten; F.G. Schröder; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh; K. Weidenhaupt; Stefan J. Wijnholds; J. Anderson; L. Bähren; M. E. Bell; Marinus Jan Bentum; Philip Best

Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.


Astroparticle Physics | 2015

The shape of the radio wavefront of extensive air showers as measured with LOFAR

A. Corstanje; P. Schellart; A. Nelles; S. Buitink; J. E. Enriquez; H. Falcke; W. Frieswijk; J.R. Hörandel; M. Krause; J. P. Rachen; Olaf Scholten; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh; M. van den Akker; A. Alexov; J. Anderson; I. M. Avruch; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; F. de Gasperin; E. de Geus

Extensive air showers, induced by high energy cosmic rays impinging on the Earths atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parametrization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.


Astroparticle Physics | 2015

Measuring a Cherenkov ring in the radio emission from air showers at 110-190 MHz with LOFAR

A. Nelles; P. Schellart; S. Buitink; A. Corstanje; K. D. de Vries; J. E. Enriquez; H. Falcke; W. Frieswijk; J.R. Hörandel; Olaf Scholten; S. ter Veen; Satyendra Thoudam; M. van den Akker; J. Anderson; A. Asgekar; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; Jaap D. Bregman; F. Breitling; J. Broderick; W. N. Brouw; M. Brüggen; H. R. Butcher; B. Ciardi; Adam T. Deller; S. Duscha; J. Eislöffel; R. A. Fallows

Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which starts to dominate the emission pattern for frequencies above ∼100∼100 MHz. In this article we present the first detailed measurements of this structure. Ring structures in the radio emission of air showers are measured with the LOFAR radio telescope in the frequency range of 110–190 MHz. These data are well described by CoREAS simulations. They clearly confirm the importance of including the index of refraction of air as a function of height. Furthermore, the presence of the Cherenkov ring offers the possibility for a geometrical measurement of the depth of shower maximum, which in turn depends on the mass of the primary particle.


Astronomy and Astrophysics | 2014

Galactic interstellar turbulence across the southern sky seen through spatial gradients of the polarization vector

M. Iacobelli; Blakesley Burkhart; M. Haverkorn; A. Lazarian; E. Carretti; Lister Staveley-Smith; B. M. Gaensler; G. Bernardi; M. Kesteven; S. Poppi

Radio synchrotron polarization maps of the Galaxy can be used to infer the properties of interstellar turbulence in the diffuse warm ionized medium (WIM). In this paper, we investigate the spatial gradient of linearly polarized synchrotron emission (


Astronomy and Astrophysics | 2013

Rotation measure synthesis at the 2 m wavelength of the FAN region : unveiling screens and bubbles

M. Iacobelli; M. Haverkorn; P. Katgert

|\nabla\textbf{P}|/|\textbf{P}|


Astronomy and Astrophysics | 2017

Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342

C. L. Van Eck; M. Haverkorn; M.I.R. Alves; R. Beck; A. G. de Bruyn; Torsten A. Enßlin; J. S. Farnes; Katia Ferriere; George Heald; Cathy Horellou; A. Horneffer; M. Iacobelli; Vibor Jelić; Ivan Marti-Vidal; D. D. Mulcahy; W. Reich; H. J. A. Röttgering; Anna M. M. Scaife; D. H. F. M. Schnitzeler; C. Sobey; S. S. Sridhar

) as a tracer of turbulence, the relationship of the gradient to the sonic Mach number of the WIM, and changes in morphology of the gradient as a function of Galactic position in the southern sky. We use data from the S-band Polarization All Sky Survey (S-PASS) to image the spatial gradient of the linearly polarized synchrotron emission (


Monthly Notices of the Royal Astronomical Society | 2015

Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

H. K. Vedantham; Luitje Koopmans; de Antonius Bruyn; Stefan J. Wijnholds; M. A. Brentjens; F. B. Abdalla; K. M. B. Asad; G. Bernardi; S. Bus; E. Chapman; B. Ciardi; S. Daiboo; Elizabeth R. Fernandez; Abhirup Ghosh; G. Harker; Vibor Jelić; Hannes Jensen; S. Kazemi; P. Lambropoulos; O. Martinez-Rubi; Garrelt Mellema; M. Mevius; A. R. Offringa; V. N. Pandey; A. H. Patil; Rajat M. Thomas; V. Veligatla; S. Yatawatta; Saleem Zaroubi; J. Anderson

|\nabla \textbf{P}|/|\textbf{P}|


Astronomy and Astrophysics | 2015

Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620 - A fresh view on a restarted AGN and doubeltjes

E. Orru; S. van Velzen; R. Pizzo; S. Yatawatta; R. Paladino; M. Iacobelli; M. Murgia; H. Falcke; Raffaella Morganti; A. G. de Bruyn; C. Ferrari; J. Anderson; A. Bonafede; D. D. Mulcahy; A. Asgekar; I. M. Avruch; R. Beck; M. E. Bell; I. van Bemmel; Marinus Jan Bentum; G. Bernardi; Philip Best; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; A. Corstanje; E. de Geus

) of the entire southern sky at

Collaboration


Dive into the M. Iacobelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Best

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Broderick

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

G. Bernardi

Smithsonian Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge