M. Isabel Menéndez
University of Oviedo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Isabel Menéndez.
Journal of Physical Chemistry A | 2011
Gloria I. Cárdenas-Jirón; Cristina Aparecida Barboza; Ramón López; M. Isabel Menéndez
In this work, we investigated the UV-vis spectra of the [Ru(bipy)(2)(MPyTPP)Cl](+) (MPyTPP = 5-pyridyl-15,20,25-triphenylporphyrin) complex and its related species [Ru(bipy)(2)(py)Cl](+) and MPyTPP, by using time-dependent density functional theory and a set of functionals (B3LYP, M05, MPWB1K, and PBE0) in chloroform with the basis set 6-31++G(d,p) for nonmetal atoms and the pseudopotential LANL2DZ for Ru. Practically no geometrical changes are observed in the Ru environment when py ligand is replaced by MPyTPP. This replacement favors the electronic redistribution from bipy ligands to Ru, and from the metal to MPyTPP ligand, as indicated by NBO analysis. We found that M05 functional predicts very well the UV-vis spectra, as it shows a low deviation with respect to the experimental data, with a maximum error of 0.19 eV (11 nm). M05 theoretical electronic spectrum of [Ru(bipy)(2)(MPyTPP)Cl](+) complex indicates that the presence of the Ru complex does not alter Q porphyrin bands, while charge transfer bands from Ru to bipy and porphyrin ligands mixes up in the region close to the porphyrin Soret band. Theoretical analysis allows the decomposition of this broad experimental band into specific ones identifying the Soret band and new metal to ligand charge transfers toward porphyrin at 425 and 478 nm, which were not possible in none of the moieties MPyTPP and [Ru(bipy)(2)(Py)Cl](+) complex. In the UV region, the most intense intraligand band of bipy ligands becomes slightly blue-shifted both in the experimental and in the theoretical spectrum of [Ru(bipy)(2)(MPyTPP)Cl](+) complex compared to that in [Ru(bipy)(2)(py)Cl](+) complex. Some of the bands of [Ru(bipy)(2)(MPyTPP)Cl](+) showed in this theoretical study may have practical applications. That is the case for the band at 478 nm, with potential use in PDT, and those more energetic at 348 and 329 nm, which could help in the cleavage mechanism of DNA performed by this ruthenium complex.
RSC Advances | 2015
Jaydeep Adhikary; Arnab Datta; Sanchari Dasgupta; Aratrika Chakraborty; M. Isabel Menéndez; Tanmay Chattopadhyay
Three chiral Schiff base ligands H2L1, H2L2, H2L3 have been synthesized by treating (R)-1,2-diaminopropane separately with 3,5-dichlorosalicylaldehyde, 3,5-dibromosalicylaldehyde and 3,5-diiodosalicylaldehyde, respectively. Three new asymmetric FeIII complexes, namely, FeL1Cl (1), FeL2Cl (2), FeL3Cl (3) have been prepared from their corresponding ligands. The crystal structure of 2 reveals that the complexes are mononuclear in nature. Circular dichroism (CD) studies suggest that the ligands and their corresponding complexes contain an asymmetric center. The catalytic activity of these complexes toward the epoxidation of alkenes has been investigated in the presence of iodosylbenzene (PhIO), in two solvents CH3CN and CH2Cl2. The epoxide yield suggests that the order of their catalytic efficiency is 3 > 2 > 1. This trend as well as the role of substitution on the ligand backbone on alkene epoxidation has also been confirmed by density functional theory (DFT) calculations. For further adaptation, we attached our most efficient homogeneous catalyst, 3, with surface modified magnetic nanoparticles (Fe3O4@dopa) and thereby obtained the new magnetically separable nanocatalyst Fe3O4@dopa@FeL3Cl. This catalyst has been characterized and its olefin epoxidation ability investigated in similar conditions to those used for homogeneous catalysts. The enantiomeric excess of the epoxide yield reveals the retention of chirality of the active site of Fe3O4@dopa@FeL3Cl. The catalyst can be easily recovered by magnetic separation and recycled several times without significant loss of its catalytic activity.
Journal of Physical Chemistry A | 2008
Gloria I. Cárdenas-Jirón; Carlos Venegas; Ramón López; M. Isabel Menéndez
Density functional calculations at the B3LYP/6-31+G(d) (LACVP(D) for Se) theory level have been carried out on 5,10,15,20-tetraphenylsapphyrin ( TPS), 5,10,15,20-tetraphenyl-26,28-dioxasapphyrin ( TP2OS), 5,10,15,20-tetraphenyl-26,28-dithiasapphyrin ( TP2SS), and 5,10,15,20-tetraphenyl-26,28-diselenasapphyrin ( TP2SeS). In agreement with experimental findings, our theoretical results show that TPS and TP2OS present an inverted conformation, whereas TP2SS and TP2SeS are more stable in the normal one. It was found that the relative stability of the normal and inverted conformers of the just mentioned sapphyrins correlates positevily with their degree of planarity and aromaticity, which depends on the size of the heteroatom, the steric repulsions produced by phenyl rings at the meso C atoms, and the network and nature of the bond critical points (BCPs) inside the macrocycle. These BCPs have been characterized by means of the AIM analysis and, some selected ones, by the changes in the total energy of significant fragments when distorted to avoid them.
Chemistry: A European Journal | 2017
Rebeca González-Fernández; Pascale Crochet; Victorio Cadierno; M. Isabel Menéndez; Ramón López
The synthesis and catalytic behavior of the osmium(II) complexes [OsCl2 (η6 -p-cymene)(PR2 OH)] [R=Me (2 a), Ph (2 b), OMe (2 c), OPh (2 d)] in nitrile hydration reactions is presented. Among them, the best catalytic results were obtained with the phosphinous acid derivative [OsCl2 (η6 -p-cymene)(PMe2 OH)] (2 a), which selectively provided the desired primary amides in excellent yields and short times at 80 °C, employing directly water as solvent, and without the assistance of any basic additive (TOF values up to 200 h-1 ). The process was successful with aromatic, heteroaromatic, aliphatic, and α,β-unsaturated organonitriles, and showed a high functional group tolerance. Indeed, complex 2 a represents the most active and versatile osmium-based catalyst for the hydration of nitriles reported so far in the literature. In addition, it exhibits a catalytic performance similar to that of its ruthenium analogue [RuCl2 (η6 -p-cymene)(PMe2 OH)] (4). However, when compared to 4, the osmium complex 2 a turned out to be faster in the hydration of less-reactive aliphatic nitriles, whereas the opposite trend was generally observed with aromatic substrates. DFT calculations suggest that these differences in reactivity are mainly related to the ring strain associated with the key intermediate in the catalytic cycle, that is, a five-membered metallacyclic species generated by intramolecular addition of the hydroxyl group of the phosphinous acid ligand to the metal-coordinated nitrile.
Journal of Organic Chemistry | 2010
Tomás L. Sordo; M. Isabel Menéndez
A theoretical study of the geometry, the electronic structure, the electronic absorption spectra, and (1)H and (13)C NMR spectra of the [14]subporphine(1.1.1)-hydroxyboron(III) complex, free-base subporphyrin, and its dioxygen and dithio pyrrole substituted derivatives using CH, N, and P as bridging meso linkages was performed at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d) theory level. The geometrical structure of these systems is mainly determined by the internal area delimited by the meso atoms and the alpha-carbon atoms of the pyrrolic rings, and by the number and nature of the atoms located on this area. All the hydroxyboron subporphyrins and dioxo and dithio subporphyrins with CH meso connectors display a conical shaped geometry. The presence of strong repulsions between the atoms on the central zone of the remaining systems provokes a correlative tilting of one of the three rings with loss of the conical shape with important consequences on spectroscopic properties. A particularly interesting case is the dioxosubporphyrin with P connectors in which the large area of the central zone determined by these connectors allows for an almost planar geometry that endows it with special features. The molecules presenting a tilted ring display weak absorption bands. Generally, the intensity of the bands moderately increases when the geometry is cone shaped. The dioxo heterosubporphyrins with CH (conical shape) and P (almost planar) connectors present strong absorption bands. (1)H and (13)C chemical shifts clearly reflect the effect of geometry distortion provoked by the repulsion among the atoms of the central area of the system indicating a deep perturbation of the pi system of the molecules.
Journal of Organic Chemistry | 2009
Pablo Campomanes; Josefa Flórez; Ivan Perez-Sanchez; Marcos G. Suero; Tomás L. Sordo; M. Isabel Menéndez
The mechanisms for the evolution of pentacarbonyl-5-hexenylchromate complexes, unsubstituted and methyl substituted at C2, formed from a pentacarbonyl(alkoxy)carbene complex of chromium, the corresponding ketone lithium enolate, and allylmagnesium bromide, were theoretically investigated by using DFT (Density Functional Theory) at the B3PW91/6-31G* level (LANL2DZ for Cr and Br) taking into account the effect of THF solvent through the PCM model (Polarizable Continuum Model). Methyl substitution at C2 provokes a shortening of about 5 degrees in the C1-C2-C3 angle that favors the formation of the pentacyclic product. Also, the presence of this methyl substituent at C2 sterically disfavors the formation of the hexacyclic product. Thus, our results yield the hexacyclic system as the most favored product for the evolution of the unsubstituted alkylpentacarbonylchromate complex, and the pentacyclic product in the case of the substituted system, in good agreement with the experimental findings. The stereochemistry of the products experimentally observed is determined at the transition state for the migration of the Cr(CO)(5) fragment from C1 to C6 and the conformational rearrangement of the C1-C6 skeleton. Amine molecules, present in the reaction medium, can play a catalytic role by assisting the 1,2-H migration in the last step for the formation of hexacyclic products.
Chemistry: A European Journal | 2016
Rebeca Arévalo; M. Isabel Menéndez; Ramón López; Isabel Merino; Lucía Riera; Julio Pérez
KN(SiMe3 )2 reacts with [Re(CO)3 (phen)(PMe3 )]OTf via reversible addition to the phen ligand and irreversible deprotonation of the PMe3 ligand followed by intramolecular attack to phen by the deprotonated phosphane, whereas MeLi irreversibly adds to phen. The addition of MeLi has been shown to be intermolecular, unlike previously known nucleophilic additions to pyridines.
Journal of Computational Chemistry | 2005
Pablo Campomanes; M. Isabel Menéndez; Ramón López; Tomás L. Sordo
Computations sho that independent NCO rotation is not possible in N,N‐diethyl‐1‐naphthamide, and that the coalescence signal corresponding to methyl equivalence observed in the VT NMR spectrum of this system is caused by a complex process whose rate‐determining step implies concerted NCO, ArCO, and ethyl rotations. The calculated Gibbs energy barriers for these processes in solution are in good agreement with the experimental values.
Journal of Molecular Structure-theochem | 1998
Emma del Río; M. Isabel Menéndez; Raḿon López; Tomás L. Sordo
Abstract Replacement of a hydrogen atom by fluorine in CH + 3 makes a cyclic transition structure (TS) appearing on the C 3 H + 5 potential energy surface (PES) become a minimum on the C 3 H 4 F + PES owing to the formation of a strong polar FC bond in the CH 2 F + fragment that avoids a destabilizing four-electron interaction.
Archive | 2017
Sergio Fombona; Maialen Espinal-Viguri; Miguel A. Huertos; Jesús G. Díaz; M. Isabel Menéndez; Ramón López; Julio Pérez; Lucía Riera
Related Article: Sergio Fombona, Maialen Espinal-Viguri, Miguel A. Huertos, Jesus Diaz, M. Isabel Menendez, Ramon Lopez, Julio Perez, Lucia Riera|2016|Chem.-Eur.J.|22|17160|doi:10.1002/chem.201603433