Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. Arévalo is active.

Publication


Featured researches published by M. J. Arévalo.


Monthly Notices of the Royal Astronomical Society | 2013

The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT

C. M. Raiteri; M. Villata; F. D'Ammando; V. M. Larionov; M. A. Gurwell; D. O. Mirzaqulov; Paul S. Smith; J. A. Acosta-Pulido; I. Agudo; M. J. Arévalo; E. Benítez; A. Berdyugin; D. A. Blinov; G. A. Borman; M. Böttcher; V. Bozhilov; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; V. T. Doroshenko; Yu. S. Efimov; N. V. Efimova; Sh. A. Ehgamberdiev; J. L. Gómez; P. A. González-Morales; D. Hiriart; S. Ibryamov; Y. Jadhav; S. G. Jorstad

Since the launch of the Fermi satellite, BL Lacertae has been moderately active at ?-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST–AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily ?-ray observations by Fermi. Discrete correlation analysis between the optical and ?-ray emission reveals correlation with a time lag of 0 ± 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding ?-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and ?-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15°, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011–2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.


Astronomy and Astrophysics | 2012

Variability of the blazar 4C 38.41 (B3 1633+382) from GHz frequencies to GeV energies

C. M. Raiteri; M. Villata; Paul S. Smith; V. M. Larionov; J. A. Acosta-Pulido; Margo F. Aller; F. D'Ammando; Gurwell; S. G. Jorstad; M. Joshi; O. M. Kurtanidze; A. Lähteenmäki; D. O. Mirzaqulov; I. Agudo; Hugh D. Aller; M. J. Arévalo; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; D. A. Blinov; K. Blumenthal; C. S. Buemi; A. Bueno; T.M. Carleton; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; A. Di Paola

Context. After years of modest optical activity, the quasar-type blazar 4C 38.41 (B3 1633+382) experienced a large outburst in 2011, which was detected throughout the entire electromagnetic spectrum, renewing interest in this source. Aims. We present the results of low-energy multifrequency monitoring by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) consortium and collaborators, as well as those of spectropolarimetric/spectrophotometric monitoring at the Steward Observatory. We also analyse high-energy observations of the Swift and Fermi satellites. This combined study aims to provide insights into the source broad-band emission and variability properties. Methods. We assemble optical, near-infrared, millimetre, and radio light curves and investigate their features and correlations. In the optical, we also analyse the spectroscopic and polarimetric properties of the source. We then compare the low-energy emission behaviour with that at high energies. Results. In the optical-UV band, several results indicate that there is a contribution from a quasi-stellar-object (QSO) like emission component, in addition to both variable and polarised jet emission. In the optical, the source is redder-when-brighter, at least for R ≳ 16. The optical spectra display broad emission lines, whose flux is constant in time. The observed degree of polarisation increases with flux and is higher in the red than the blue. The spectral energy distribution reveals a bump peaking around the U band. The unpolarised emission component is likely thermal radiation from the accretion disc that dilutes the jet polarisation. We estimate its brightness to be R QSO ∼ 17.85-18 and derive the intrinsic jet polarisation degree. We find no clear correlation between the optical and radio light curves, while the correlation between the optical and γ-ray flux apparently fades in time, likely because of an increasing optical to γ-ray flux ratio. Conclusions. As suggested for other blazars, the long-term variability of 4C 38.41 can be interpreted in terms of an inhomogeneous bent jet, where different emitting regions can change their alignment with respect to the line of sight, leading to variations in the Doppler factor δ. Under the hypothesis that in the period 2008-2011 all the γ-ray and optical variability on a one-week timescale were due to changes in δ, this would range between ∼7 and ∼21. If the variability were caused by changes in the viewing angle θ only, then θ would go from ∼2.6° to ∼5°. Variations in the viewing angle would also account for the dependence of the polarisation degree on the source brightness in the framework of a shock-in-jet model.


Monthly Notices of the Royal Astronomical Society | 2006

CCD photometry of the globular cluster M2: RR Lyrae physical parameters and new variables

C. Lázaro; A. Arellano Ferro; M. J. Arévalo; D. M. Bramich; Sunetra Giridhar; E. Poretti

We report the results of CCD V and R photometry of the RR Lyrae stars in M2. The periodicities of most variables are revised and new ephemerides are calculated. Light-curve decomposition of the RR Lyrae stars was carried out and the corresponding mean physical parameters [Fe/H] = -1.47, T eff = 6276 K, log L = 1.63 L ⊙ and M V = 0.71 from nine RRab and [Fe/H] = -1.61, M = 0.54 M ⊙ , T eff = 7215 K, logL = 1.74 L ⊙ and M V = 0.71 from two RRc stars were calculated. A comparison of the radii obtained from the above luminosity and temperature with predicted radii from non-linear convective models is discussed. The estimated mean distance to the cluster is 10.49 ± 0.15 kpc. These results place M2 correctly in the general globular cluster sequences for Oosterhoff type, mass, luminosity and temperature, all as a function of the metallicity. Mean relationships for M, log L/L ⊙ , T eff and M V as a function of [Fe/H] for a family of globular clusters are offered. These trends are consistent with evolutionary and structural notions on the horizontal branch. Eight new variables are reported.


Monthly Notices of the Royal Astronomical Society | 2015

The WEBT campaign on the BL Lac object PG 1553+113 in 2013. An analysis of the enigmatic synchrotron emission

C. M. Raiteri; A. Stamerra; M. Villata; V. M. Larionov; J. A. Acosta-Pulido; M. J. Arévalo; A. A. Arkharov; E. Benítez; V. Bozhilov; G. A. Borman; C. S. Buemi; P. Calcidese; M. I. Carnerero; D. Carosati; R. A. Chigladze; G. Damljanovic; A. Di Paola; V. T. Doroshenko; N. V. Efimova; Sh. A. Ehgamberdiev; M. Giroletti; P. A. González-Morales; A. B. Grinon-Marin; T. S. Grishina; D. Hiriart; S. Ibryamov; S. A. Klimanov; E. N. Kopatskaya; O. M. Kurtanidze; S. O. Kurtanidze

A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April–August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes in April–July. We also analyse the UV and X-ray data acquired by the Swift and XMM‐Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical, we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomesharderwhentheX-rayfluxincreases.ThelongXMM‐Newtonexposurerevealsacurved X-ray spectrum. In the SED, the XMM‐Newton data show a hard near-UV spectrum, while SwiftdatadisplayasoftershapethatisconfirmedbypreviousHubbleSpaceTelescope/Cosmic Origins Spectrograph and International Ultraviolet Explorer observations. Polynomial fits to the optical–X-ray SED show that the synchrotron peak likely lies in the 4–30 eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: (i) orientation effects, (ii) additional absorption, (iii) multiple emission components, and (iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet model.


Monthly Notices of the Royal Astronomical Society | 2015

Multiwavelength behaviour of the blazar OJ 248 from radio to γ-rays

M. I. Carnerero; C. M. Raiteri; M. Villata; J. A. Acosta-Pulido; F. D'Ammando; Paul S. Smith; V. M. Larionov; I. Agudo; M. J. Arévalo; A. A. Arkharov; U. Bach; E. Benítez; D. A. Blinov; V. Bozhilov; C. S. Buemi; A. Bueno Bueno; D. Carosati; C. Casadio; W. P. Chen; G. Damljanovic; A. Di Paola; N. V. Efimova; Sh. A. Ehgamberdiev; M. Giroletti; J. L. Gómez; P. A. González-Morales; A. B. Grinon-Marin; T. S. Grishina; M. A. Gurwell; D. Hiriart

We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006-2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman Alpha intervening system at z = 0.525. Two major outbursts were observed in 2006-2007 and in 2012-2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio-optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the gamma-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches about 19 per cent during the early stage of the 2012-2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarisation angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour or structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg II broad emission line with an essentially stable flux of 6.2 e-15 erg cm-2 s-1 and a full width at half-maximum of 2053 km s-1.


Monthly Notices of the Royal Astronomical Society | 2014

Infrared properties of blazars: putting the GASP-WEBT sources into context

C. M. Raiteri; M. Villata; M. I. Carnerero; J. A. Acosta-Pulido; V. M. Larionov; F. D'Ammando; M. J. Arévalo; A. A. Arkharov; A. Bueno Bueno; A. Di Paola; N. V. Efimova; P. A. González-Morales; D. L. Gorshanov; A. B. Grinon-Marin; C. Lázaro; A. Manilla-Robles; A. Pastor Yabar; I. Puerto Giménez; S. Velasco

The infrared properties of blazars can be studied from the statistical point of view with the help of sky surveys, like that provided by the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). However, these sources are known for their strong and unpredictable variability, which can be monitored for a handful of objects only. In this paper we consider the 28 blazars (14 BL Lac objects and 14 flat-spectrum radio quasars, FSRQs) that are regularly monitored by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) since 2007. They show a variety of infrared colours, redshifts, and infrared-optical spectral energy distributions (SEDs), and thus represent an interesting mini-sample of bright blazars that can be investigated in more detail. We present near-IR light curves and colours obtained by the GASP from 2007 to 2013, and discuss the infrared-optical SEDs. These are analysed with the aim of understanding the interplay among different emission components. BL Lac SEDs are accounted for by synchrotron emission plus an important contribution from the host galaxy in the closest objects, and dust signatures in 3C 66A and Mkn 421. FSRQ SEDs require synchrotron emission with the addition of a quasar-like contribution, which includes radiation from a generally bright accretion disc, broad line region, and a relatively weak dust torus.


Monthly Notices of the Royal Astronomical Society | 2016

Exceptional outburst of the blazar CTA 102 in 2012: The GASP-WEBT campaign and its extension.

V. M. Larionov; M. Villata; C. M. Raiteri; S. G. Jorstad; Alan P. Marscher; I. Agudo; Paul S. Smith; J. A. Acosta-Pulido; M. J. Arévalo; A. A. Arkharov; D. A. Blinov; G. Borisov; G. A. Borman; V. Bozhilov; A. Bueno; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; Dan P Clemens; A. Di Paola; Sh. A. Ehgamberdiev; J. L. Gómez; P. A. González-Morales; A. B. Grinon-Marin; T. S. Grishina; V. A. Hagen-Thorn; Sunay Ibryamov; R. Itoh; M. Joshi

Russian RFBR [15-02-00949]; St. Petersburg University [6.38.335.2015, 6.42.1113.2016]; NASA [NNX08AV65G, NNX10AO59G, NNX10AU15G, NNX11AO37G, NNX11AQ03G, NNX14AQ58G, NNX09AU10G, NNX12AO93G]; Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2013-40825-P]; MINECO; NSF; BU; Lowell Observatory; Bulgarian Ministry of Education and Sciences [DO 02-137 (BIn-13/09)]; Uzbekistan Academy of Sciences [F2-FA-F027]


Monthly Notices of the Royal Astronomical Society | 2017

Synchrotron emission from the blazar PG 1553+113. An analysis of its flux and polarization variability

C. M. Raiteri; Fabrizio Nicastro; A. Stamerra; M. Villata; V. M. Larionov; D. Blinov; J. A. Acosta-Pulido; M. J. Arévalo; A. A. Arkharov; G. A. Borman; M. I. Carnerero; D. Carosati; M. Cecconi; W. P. Chen; G. Damljanovic; A. Di Paola; Sh. A. Ehgamberdiev; A. Frasca; M. Giroletti; P. A. González-Morales; A. B. Grinon-Marin; T. S. Grishina; Ping-Chen Huang; Sunay Ibryamov; S. A. Klimanov; E. N. Kopatskaya; O. M. Kurtanidze; S. O. Kurtanidze; A. Lähteenmäki; Elena G. Larionova

In 2015 July 29 - September 1 the satellite XMM-Newton pointed at the BL Lac object PG 1553+133 six times, collecting data for 218 hours. During one of these epochs, simultaneous observations by the Swift satellite were requested to compare the results of the X-ray and optical-UV instruments. Optical, near-infrared and radio monitoring was carried out by the Whole Earth Blazar Telescope (WEBT) collaboration for the whole observing season. We here present the results of the analysis of all these data, together with an investigation of the source photometric and polarimetric behaviour over the last three years. The 2015 EPIC spectra show slight curvature and the corresponding light curves display fast X-ray variability with a time scale of the order of 1 hour. In contrast to previous results, during the brightest X-ray states detected in 2015 the simple log-parabolic model that best-fits the XMM-Newton data also reproduces reasonably well the whole synchrotron bump, suggesting a peak in the near-UV band. We found evidence of a wide rotation of the polarization angle in 2014, when the polarization degree was variable, but the flux remained almost constant. This is difficult to interpret with deterministic jet emission models, while it can be easily reproduced by assuming some turbulence of the magnetic field.


Astronomy and Astrophysics | 2017

A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664

Ramón Iglesias-Marzoa; Mercedes Lopez-Morales; M. J. Arévalo; Jeffrey L. Coughlin; C. Lázaro

The observational mass-radius relation of main sequence stars with masses between ~0.3 and 1.0 Msun reveals deviations between the stellar radii predicted by models and the observed radii of stars in detached binaries. We generate an accurate physical model of the low-mass eclipsing binary T-Cyg1-12664 in the Kepler mission field to measure the physical parameters of its components and to compare them with the prediction of theoretical stellar evolution models. We analyze the Kepler mission light curve of T-Cyg1-12664 to accurately measure the times and phases of the primary and secondary eclipse. In addition, we measure the rotational period of the primary component by analyzing the out-of-eclipse oscillations that are due to spots. We accurately constrain the effective temperature of the system using ground-based absolute photometry in B, V, Rc, and Ic. We also obtain and analyze V, Rc, Ic differential light curves to measure the eccentricity and the orbital inclination of the system, and a precise Teff ratio. From the joint analysis of new radial velocities and those in the literature we measure the individual masses of the stars. Finally, we use the PHOEBE code to generate a physical model of the system. T-Cyg1-12664 is a low eccentricity system, located d=360+/-22 pc away from us, with an orbital period of P=4.1287955(4) days, and an orbital inclination i=86.969+/-0.056 degrees. It is composed of two very different stars with an active G6 primary with Teff1=5560+/-160 K, M1=0.680+/-0.045 Msun, R1=0.799+/-0.017 Rsun, and a M3V secondary star with Teff2=3460+/-210 K, M2=0.376+/-0.017 Msun, and R2=0.3475+/-0.0081 Rsun. The primary star is an oversized and spotted active star, hotter than the stars in its mass range. The secondary is a cool star near the mass boundary for fully convective stars (M~0.35 Msun), whose parameters appear to be in agreement with low-mass stellar model.


Monthly Notices of the Royal Astronomical Society | 2004

The fundamental parameters of the Algol binary AI Draconis revisited

C. Lazaro; I. G. Martínez-Pais; M. J. Arévalo

Collaboration


Dive into the M. J. Arévalo's collaboration.

Top Co-Authors

Avatar

C. Lázaro

University of La Laguna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge