M. J. Lynch
Curtin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. J. Lynch.
Publications of the Astronomical Society of Australia | 2013
S. J. Tingay; R. Goeke; Judd D. Bowman; D. Emrich; S. M. Ord; D. A. Mitchell; M. F. Morales; T. Booler; B. Crosse; R. B. Wayth; C. J. Lonsdale; S. E. Tremblay; D. Pallot; T. Colegate; Andreas Wicenec; N. Kudryavtseva; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; S. Burns; John D. Bunton; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; L. deSouza; B. M. Gaensler; L. J. Greenhill; Peter Hall; B. J. Hazelton
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.
Proceedings of the IEEE | 2009
C.L. Lonsdale; R. J. Cappallo; M. F. Morales; F. Briggs; Leonid Benkevitch; Judd D. Bowman; John D. Bunton; S. Burns; B. E. Corey; L. deSouza; Sheperd S. Doeleman; Mark Derome; Avinash A. Deshpande; M.R. Gopala; L. J. Greenhill; David Herne; Jacqueline N. Hewitt; P. A. Kamini; J. Kasper; B. B. Kincaid; Jonathon Kocz; E. Kowald; E. Kratzenberg; D. Kumar; M. J. Lynch; S. Madhavi; Michael Scott Matejek; D. A. Mitchell; E. Morgan; D. Oberoi
The Murchison Widefield Array is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations but is initially focused on three key science projects: detection and characterization of three-dimensional brightness temperature fluctuations in the 21 cm line of neutral hydrogen during the epoch of reionization (EoR) at redshifts from six to ten; solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources; and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broadband active dipoles, arranged into 512 ldquotilesrdquo comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5 km in diameter, with a small number of outliers extending to 3 km. All tile-tile baselines are correlated in custom field-programmable gate array based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment, allowing full exploitation of the instrumental capabilities.
The Astronomical Journal | 2010
Aaron R. Parsons; Donald C. Backer; Griffin Foster; Melvyn C. H. Wright; Richard Bradley; Nicole E. Gugliucci; Chaitali R. Parashare; Erin E. Benoit; James E. Aguirre; Daniel C. Jacobs; C. L. Carilli; David Herne; M. J. Lynch; Jason Manley; D. Werthimer
We are developing the Precision Array for Probing the Epoch of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e−5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C� ) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at � = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.
Publications of the Astronomical Society of Australia | 2013
Judd D. Bowman; Iver H. Cairns; David L. Kaplan; Tara Murphy; Divya Oberoi; Lister Staveley-Smith; W. Arcus; David G. Barnes; G. Bernardi; F. Briggs; Shea Brown; John D. Bunton; Adam J. Burgasser; R. J. Cappallo; Shami Chatterjee; B. E. Corey; Anthea J. Coster; Avinash A. Deshpande; L. deSouza; D. Emrich; Philip J. Erickson; R. Goeke; B. M. Gaensler; L. J. Greenhill; L. Harvey-Smith; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; J. Kasper
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
Monthly Notices of the Royal Astronomical Society | 2014
A. R. Offringa; B. McKinley; Natasha Hurley-Walker; F. Briggs; R. B. Wayth; David L. Kaplan; M. E. Bell; L. Feng; A. R. Neben; J. D. Hughes; Jonghwan Rhee; Tara Murphy; N. D. R. Bhat; G. Bernardi; Judd D. Bowman; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; A. Ewall-Wice; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; L. Hindson; M. Johnston-Hollitt; Daniel C. Jacobs; J. Kasper; E. Kratzenberg; E. Lenc
Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.
Publications of the Astronomical Society of Australia | 2015
R. B. Wayth; E. Lenc; M. E. Bell; J. R. Callingham; K. S. Dwarakanath; Thomas M. O. Franzen; Bi Qing For; B. M. Gaensler; Paul Hancock; L. Hindson; Natasha Hurley-Walker; C. A. Jackson; M. Johnston-Hollitt; A. D. Kapińska; B. McKinley; J. Morgan; A. R. Offringa; P. Procopio; Lister Staveley-Smith; C. Wu; Q. Zheng; Cathryn M. Trott; G. Bernardi; Judd D. Bowman; F. Briggs; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; D. Emrich; R. Goeke
© Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/
The Astrophysical Journal | 2013
Nithyanandan Thyagarajan; N. Udaya Shankar; Ravi Subrahmanyan; W. Arcus; G. Bernardi; Judd D. Bowman; F. Briggs; John D. Bunton; R. J. Cappallo; B. E. Corey; L. deSouza; D. Emrich; B. M. Gaensler; R. Goeke; L. J. Greenhill; B. J. Hazelton; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; B. B. Kincaid; R. Koenig; E. Kratzenberg; Colin J. Lonsdale; M. J. Lynch; S. Russell McWhirter; D. A. Mitchell; M. F. Morales; E. Morgan
In this paper, we explore for the first time the relative magnitudes of three fundamental sources of uncertainty, namely, foreground contamination, thermal noise, and sample variance, in detecting the H I power spectrum from the epoch of reionization (EoR). We derive limits on the sensitivity of a Fourier synthesis telescope to detect EoR based on its array configuration and a statistical representation of images made by the instrument. We use the Murchison Widefield Array (MWA) configuration for our studies. Using a unified framework for estimating signal and noise components in the H I power spectrum, we derive an expression for and estimate the contamination from extragalactic point-like sources in three-dimensional k -space. Sensitivity for EoR H I power spectrum detection is estimated for different observing modes with MWA. With 1000 hr of observing on a single field using the 128 tile MWA, EoR detection is feasible (S/N >1 for k ≲ 0.8 Mpc -1 ). Bandpass shaping and refinements to the EoR window are found to be effective in containing foreground contamination, which makes the instrument tolerant to imaging errors. We find that for a given observing time, observing many independent fields of view does not offer an advantage over a single field observation when thermal noise dominates over other uncertainties in the derived power spectrum.
The Astrophysical Journal | 2015
Nithyanandan Thyagarajan; Daniel C. Jacobs; Judd D. Bowman; N. Barry; A. P. Beardsley; G. Bernardi; F. Briggs; R. J. Cappallo; P. Carroll; B. E. Corey; A. de Oliveira-Costa; Joshua S. Dillon; D. Emrich; A. Ewall-Wice; L. Feng; R. Goeke; L. J. Greenhill; B. J. Hazelton; Jacqueline N. Hewitt; Natasha Hurley-Walker; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; Han-Seek Kim; P. Kittiwisit; E. Kratzenberg; E. Lenc; J. Line; Abraham Loeb; Colin J. Lonsdale
Detection of 21 cm emission of H I from the epoch of reionization, at redshifts > z 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H I signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.
Monthly Notices of the Royal Astronomical Society | 2013
A. P. Beardsley; B. J. Hazelton; M. F. Morales; W. Arcus; David G. Barnes; G. Bernardi; Judd D. Bowman; F. Briggs; John D. Bunton; R. J. Cappallo; B. E. Corey; Avinash A. Deshpande; L. deSouza; D. Emrich; B. M. Gaensler; R. Goeke; L. J. Greenhill; David Herne; Jacqueline N. Hewitt; M. Johnston-Hollitt; David L. Kaplan; J. Kasper; B. B. Kincaid; R. Koenig; E. Kratzenberg; Colin J. Lonsdale; M. J. Lynch; S. R. McWhirter; D. A. Mitchell; Edward H. Morgan
Using the final 128 antenna locations of the MurchisonWidefield Array (MWA), we calculate its sensitivity to the epoch of reionization (EoR) power spectrum of redshifted 21 cm emission for a fiducial model and provide the tools to calculate the sensitivity for any model. Our calculation takes into account synthesis rotation, chromatic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. For the fiducial model, the MWA will be capable of a 14 σ detection of the EoR signal with one full season of observation on two fields (900 and 700 h).
Publications of the Astronomical Society of Australia | 2014
Natasha Hurley-Walker; J. Morgan; R. B. Wayth; Paul Hancock; M. E. Bell; G. Bernardi; Ramesh Bhat; F. Briggs; Avinash A. Deshpande; A. Ewall-Wice; L. Feng; B. J. Hazelton; L. Hindson; Daniel C. Jacobs; David L. Kaplan; N. Kudryavtseva; E. Lenc; Benjamin McKinley; D. A. Mitchell; Bart Pindor; P. Procopio; D. Oberoi; A. R. Offringa; S. M. Ord; J. Riding; Judd D. Bowman; R. J. Cappallo; B. E. Corey; D. Emrich; B. M. Gaensler
We present the results of an approximately 6,100 square degree 104--196MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the Murchison Widefield Array Commissioning Survey (MWACS). The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 h < Right Ascension (RA) < 8.5 h, -58 deg < Declination (Dec) < -14 deg over three frequency bands centred on 119, 150 and 180 MHz, with image resolutions of 6--3 arcmin. The catalogue has 3-arcmin angular resolution and a typical noise level of 40 mJy/beam, with reduced sensitivity near the field boundaries and bright sources. We describe the data reduction strategy, based upon mosaiced snapshots, flux density calibration and source-finding method. We present a catalogue of flux density and spectral index measurements for 14,110 sources, extracted from the mosaic, 1,247 of which are sub-components of complexes of sources.