Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. J. M. Pires is active.

Publication


Featured researches published by M. J. M. Pires.


Journal of Applied Physics | 2006

Ferromagnetic resonance studies in granular Co-SiO2 thin films

M. J. M. Pires; J.C. Denardin; E. C. F. da Silva; M. Knobel

Properties of thin granular Co–SiO2 films have been studied by means of ferromagnetic resonance (FMR). The obtained FMR results are discussed using sample magnetization, electrical conductivity, and transmission electron microscopy analysis. Co and SiO2 were sequentially deposited for the sample preparation. The general behavior of the applied field for resonance could be described using effective out-of-plane anisotropies. A dipolar interaction model developed for magnetic heterostructures was applied to the interpretation of these anisotropies. The anisotropy terms caused by the magnetic particle shapes and by the film shape can explain the results for two metallic films close to percolation, in which the film shape is the preponderant contribution. In the case of an insulating sample, the consideration of an additional anisotropy term seems to be necessary to explain the results.


Journal of Applied Physics | 2010

Magnetocaloric effect in GdGeSi compounds measured by the acoustic detection technique: Influence of composition and sample treatment

A. O. Guimarães; M. E. Soffner; A. M. Mansanares; A.A. Coelho; A. Magnus G. Carvalho; M. J. M. Pires; S. Gama; E. C. F. da Silva

In this paper we explore the acoustic detection method applied to the investigation of the magnetocaloric effect in Gd and Gd5(Ge1−xSix)4 compounds, in the temperature range from 230 to 360 K and for magnetic fields up to 20 kOe. Measurements were performed in as-cast materials, both for powder and pellet samples, and in tree samples with compositions around Gd5Ge2Si2 that underwent different thermal treatments. Small differences were observed when comparing powder and pellet samples of Gd and Gd5(Ge1−xSix)4 compounds with 0.500<x≤1.00. For the alloys with composition around Gd5Ge2Si2, which exhibit giant magnetostriction and coexistence of distinct phases, expressive changes were observed when comparing powder and pellet samples. Based on these cases, it is easy to see that the acoustic method can distinguish a second-order phase transition from a first-order magnetic-crystallographic one, and that it presents good sensitivity to detect spurious material phase in small quantities.


Journal of Physics D | 2010

Determination of the entropy change using the acoustic detection technique in the investigation of the magnetocaloric effect

M. E. Soffner; A. M. Mansanares; F.G. Gandra; A.A. Coelho; S. Gama; A. Magnus G. Carvalho; M. J. M. Pires; A. O. Guimarães; E. C. F. da Silva

In this paper we demonstrate the use of the acoustic detection as an alternative way to determine the entropy variation, ΔST, a parameter normally used to characterize the magnetocaloric effect. The measurements were performed for a Gd sample in the 252–316 K temperature range for magnetic fields from zero up to 50 kOe. The reversible adiabatic curves were built in a T versus H diagram, and specific heat data obtained at zero-magnetic field were employed to assign the entropy values of each curve. Subsequently, the entropy was plotted as a function of temperature for fixed magnetic fields, and therefore the isothermal entropy variation, ΔST, was found as a function of the temperature for several magnetic field steps.


Applied Physics Letters | 2013

Large magnetocaloric effect and refrigerant capacity near room temperature in as-cast Gd5Ge2Si2−xSnx compounds

A. Magnus G. Carvalho; J. C. G. Tedesco; M. J. M. Pires; M. E. Soffner; A. O. Guimarães; A. M. Mansanares; A. A. Coelho

Large values of isothermal entropy change (ΔST) and refrigerant capacity have been found in Gd5Ge2Si2−xSnx compounds. Values of the order of 20 J kg−1 K−1 for −ΔST were obtained in as-cast samples when submitted to a magnetic field variation of 2 T. First-order-magneto-structural transition is induced by the substitution of silicon by tin and it is shifted to lower temperatures with the tin content. It means that the magnetocaloric effect on this series can be properly tuned to a specific practical thermodynamic cycle, including near room temperature range.


Journal of Applied Physics | 2007

Exchange bias in Fe/EuTe(111) bilayers

Waldemar A. A. Macedo; M. D. Martins; M. J. M. Pires; R. B. Oliveira; C. J. S. M. Pombo; W. C. Nunes; M. Knobel; P. H. O. Rappl; P. Motisuke

We report on the investigation of the exchange bias effect in Fe layers on EuTe(111), an antiferromagnetic semiconductor. For this ferromagnet (FM)/semiconducting antiferromagnet (AFM) exchange bias system, we have found positive and negative exchange bias effect (EB). Fresh samples exhibit positive EB, independently of the applied cooling field, indicating antiferromagnetic coupling between the FM and the AFM layers at the Fe/EuTe(111) interface. The change in EB with time, from positive EB for fresh samples to negative EB after short time,is attributed to aging effects at the Fe/EuTe interface.


Journal of Physics: Conference Series | 2010

Photoacoustic based technique for measuring the magnetocaloric effect

A. O. Guimarães; A. M. Mansanares; A. Magnus G. Carvalho; A.A. Coelho; S. Gama; M. J. M. Pires; E. C. F. da Silva

This paper presents a method for detecting the magnetocaloric effect (MCE), based on the acoustic detection. Small temperature oscillations, due to the application of a modulated magnetic field, are detected by a microphone in a closed cell. The continuous scanning of a superimposed dc magnetic field allows, by numerical calculation, the determination of large temperature variations caused by magnetic field steps from zero to tens of kOe. Measurements were performed in Gd and Gd5(SixGe1-x)4 compounds. The obtained results show the efficiency of the technique, which is suitable for the investigation of materials undergoing both purely magnetic phase transitions and magnetic-crystallographic first order ones.


Physical Review B | 2006

Electron spin resonance g shift in Gd{sub 5}Si{sub 4}, Gd{sub 5}Ge{sub 4}, and Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}

M. J. M. Pires; A. M. Mansanares; E. C. F. da Silva; A. Magnus G. Carvalho; S. Gama; A. A. Coelho

We have recently argued that manganites do not possess stripes of charge order, implying that the electron-lattice coupling is weak [Loudon et al., Phys. Rev. Lett. 94, 097202 (2005)]. Here we independently argue the same conclusion based on transmission electron microscopy measurements of a nanopatterned epitaxial film of La{sub 0.5}Ca{sub 0.5}MnO{sub 3}. In strain relaxed regions, the superlattice period is modified by 2% to 3% with respect to the parent lattice, suggesting that the two are not strongly tied.Minimalist theories of complex systems are broadly of two kinds: mean field and axiomatic. So far, all theories of complex properties absent from simple systems and intrinsic to glasses are axiomatic. Stretched Exponential Relaxation (SER) is the prototypical complex temporal property of glasses, discovered by Kohlrausch 150 years ago, and now observed almost universally in microscopically homogeneous, complex nonequilibrium materials, including luminescent electronic Coulomb glasses. A critical comparison of alternative axiomatic theories with both numerical simulations and experiments strongly favors channeled dynamical trap models over static percolative or energy landscape models. The topics discussed cover those reported since the authors review article in 1996, with an emphasis on parallels between channel bifurcation in electronic and molecular relaxation.The local atomic structure of the Ag induced Si(111)-({radical}(3)x{radical}(3)) surface has been investigated using photoelectron diffraction (PED) at 10 and 300 K. Two surface components, whose intensities varied by changing the photon energy as a consequence of diffraction effects, were observed in the Si 2p core-level spectra at both temperatures. The good agreement between the experimental PED patterns of the Si 2p surface components and the simulated PED patterns indicates that the atomic structure of this surface follows the inequivalent triangle model. Further, since the PED patterns obtained at 10 and 300 K resemble each other closely, we conclude that the local atomic structure of the Ag/Si(111)-({radical}(3)x{radical}(3)) surface is the same at the two temperatures, and thus that the origin of the transition reported in the literature is an order-disorder transition.Neutron diffraction was used to determine the crystal structure and magnetic ordering pattern of a La{sub 2}CuO{sub 4} single crystal, with and without applied magnetic field. A previously unreported, subtle monoclinic distortion of the crystal structure away from the orthorhombic space group Bmab was detected. The distortion is also present in lightly Sr-doped crystals. A refinement of the crystal structure shows that the deviation from orthorhombic symmetry is predominantly determined to drive a continuous reorientation of the copper spins from the orthorhombic b axis to the c axis, directly confirming predictions based on prior magnetoresistance and Raman scattering experiments. A spin-flop transition induced by a c-axis oriented field previously reported for nonstoichiometric La{sub 2}CuO{sub 4} is also observed, but the transition field (11.5 T) is significantly larger than that in the previous work.Positron annihilation spectroscopy was applied to study relaxed P-doped n-type and undoped Si{sub 1-x}Ge{sub x} layers with x up to 0.30. The as-grown SiGe layers were found to be defect free and annihilation parameters in a random SiGe alloy could be represented as superpositions of annihilations in bulk Si and Ge. A 2 MeV proton irradiation with a 1.6x10{sup 15} cm{sup -2} fluence was used to produce saturated positron trapping in monovacancy related defects in the n-type layers. The defects were identified as V-P pairs, the E center. The distribution of Si and Ge atoms surrounding the E center was the same as in the host lattice. The process leading to the formation of V-P pairs therefore does not seem to have a significant preference for either Si or Ge atoms. In undoped Si{sub 1-x}Ge{sub x} we find that a similar irradiation produces a low concentration of divacancies or larger vacancy defects and found no evidence of monovacancies surrounded by several Ge atoms.Structural properties of the spin chain and ladder compound Sr{sub 14}Cu{sub 24}O{sub 41} have been studied using high energy x-ray diffraction. Strong incommensurate modulation reflections are observed due to the lattice mismatch of the chain and ladder structure, respectively. While modulation reflections of low orders display only a weak temperature dependence, higher orders dramatically increase in intensity when cooling the sample to 10 K. All observed modulation reflections are indexed within a super space group symmetry and no structural phase transition could be identified between 10 K and room temperature. We argue that these modulation reflections are not caused by a fivefold periodicity of the chain lattice, as claimed by Fukuda et al., Phys. Rev. B 66, 012104 (2002), but that holes localize in the potential given by the lattice modulation, which in turn gives rise to a further deformation of the lattice.We report neutron diffraction experiments on the light-induced metastable state SI in single crystals of Na{sub 2}[Fe(CN){sub 5}NO]{center_dot}2D{sub 2}O. It is shown that the metastable state SI corresponds to a linkage isomer of the NO group, the so-called isonitrosyl configuration where the NO ligand is oxygen bound to the central iron atom.The impact of group-III vacancy diffusion, generated during dielectric cap induced intermixing, on the energy state transition and the inhomogeneity reduction in the InGaAs/GaAs quantum-dot structure is investigated. We use a three-dimensional quantum-dot diffusion model and photoluminescence data to determine the thermal and the interdiffusion properties of the quantum dot. The band gap energy variation related to the dot uniformity is found to be dominantly affected by the height fluctuation. A group-III vacancies migration energy H{sub m} for InGaAs quantum dots of 1.7 eV was deduced. This result is similar to the value obtained from the bulk and GaAs/AlGaAs quantum-well materials confirming the role of SiO{sub 2} capping enhanced group-III vacancy induced interdiffusion in the InGaAs quantum dots.We report vibrating wire viscometer experiments in the concentrated and dilute phase of saturated {sup 3}He-{sup 4}He mixtures showing that the slip length may become orders of magnitude larger than the mean free path due to specular scattering of the {sup 3}He quasiparticles with a {sup 4}He coating adsorbed at the surface of the wire. Since the liquid does not almost stick to the surface, the boundary conditions for fluid flow are unusual and not accounted for by the current theory for slip [H. Hoejgaard Jensen et al., J. Low Temp. Phys. 41, 473 (1980)]. The experimental results are in excellent agreement with a recent theory for slip [R. Bowley and J. Owers-Bradley, J. Low Temp. Phys. 136, 15 (2004)] which accounts for the effect of the cylindrical geometry and for velocity slip in directions normal as well as tangential to the surface of the wire. We find that our viscosity measurements in the dilute phase resulting from the data analysis based on the recent slip theory are in better agreement with the Fermi liquid theory than previous experimental results.Magnetization measurements prove that the magnetic properties of large-angle ({theta}>30 deg. ) bismuth bicrystals with a crystallite interface (CI) of twisting types essentially differ from well-known results on single-crystalline specimens. Two superconducting phases with T{sub c}{approx}8.4 K and {approx}4.3 K were observed at the CI of bicrystals while ordinary rhombohedral Bi is not a superconductor. We conclude that these phases have to do with the central part and the adjacent layers of the CI of bicrystals.The local structure around Ag ions in silver borate glasses g-Ag{sub 2}O{center_dot}nB{sub 2}O{sub 3} (n=2,4) was studied by x-ray absorption spectroscopy at the Ag K edge for temperatures from 77 to 450 K. Extended x-ray absorption fine structure (EXAFS) analysis based on cumulant expansion or multishell Gaussian model fails for these systems. Therefore, the radial distribution functions (RDFs) around Ag ions were reconstructed using a method based on the direct inversion of the EXAFS expression. The RDFs consist of about eight atoms (oxygens and borons), exhibit a relatively weak temperature dependence, and indicate the presence of strong static disorder. Two main components can be identified in RDFs, located at about 2.3-2.4 A and 2.5-3.4 A, respectively. The chemical types of atoms contributing to the RDF were determined via a simulation of configurationally averaged x-ray absorption near-edge structure (XANES) and EXAFS signals. The immediate neighborhood of Ag contains mostly oxygens while borons dominate at larger distances. The combination of EXAFS and XANES techniques allowed us to determine a more complete structural model than would be possible by relying solely on either EXAFS or XANES alone.Hall effects of the La{sub 0.7}Ce{sub 0.3}MnO{sub 3+{delta}} film, which is believed an electron-doped manganite, have been experimentally studied, and a positive normal Hall coefficient is observed below the Curie temperature when the oxygen content of the film varies in a wide range. These observations may be attributed to the presence of excessive oxygen and composition distribution in the film, which may occur companying tetravalent ion doping. Removing excessive oxygen drives the system into the electron-doping state, however, the resistivity increases monotonically with oxygen loss, and the metal-to-semiconductor transition typical for a hole-doped manganite disappears. These results suggest the determinative role of hole doping for the resistive and magnetic behaviors in La{sub 0.7}Ce{sub 0.3}MnO{sub 3+{delta}}.We studied the influence of the disorder introduced in polycrystalline MgB{sub 2} samples by neutron irradiation. To circumvent self-shielding effects due to the strong interaction between thermal neutrons and {sup 10}B we employed isotopically enriched {sup 11}B which contains 40 times less {sup 10}B than natural B. The comparison of electrical and structural properties of different series of samples irradiated in different neutron sources, also using Cd shields, allowed us to conclude that, despite the low {sup 10}B content, the main damage mechanisms are caused by thermal neutrons, whereas fast neutrons play a minor role. Irradiation leads to an improvement in both upper critical field and critical current density for an exposure level in the range 1-2x10{sup 18} cm{sup -2}. With increasing fluence the superconducting properties are depressed. An in-depth analysis of the critical field and current density behavior has been carried out to identify what scattering and pinning mechanisms come into play. Finally, the correlation between some characteristic lengths and the transition widths is analyzed.The structure of Na{sub 0.5}CoO{sub 2}, the low-temperature insulator that separates the antiferromagnetic and normal metals in the Na{sub x}CoO{sub 2} phase diagram, is studied by high-resolution powder neutron diffraction at temperatures between 10 and 300 K. Profile analysis confirms that it has an orthorhombic symmetry structure, space group Pnmm, consisting of layers of edge-sharing CoO{sub 6} octahedra in a triangular lattice, with Na ions occupying ordered positions in the interleaving planes. The oxygen content is found to be stoichiometric within 1%, indicating that the Na concentration accurately determines the electronic doping. The Na ordering creates two distinct Co sites, in parallel chains running along one crystallographic direction. The differences in their Co-O bond distances and the derived bond valence sums, reflections of the degree of charge ordering in this phase, are very small.The temperature dependence of the local structure of V{sub 2}O{sub 3} in the vicinity of the metal-to-insulator transition (MIT) has been investigated using hard x-ray absorption spectroscopy. It is shown that the vanadium pair distance along the hexagonal c axis changes abruptly at the MIT as expected. However, a continuous increase of the tilt of these pairs sets in already at higher temperatures and reaches its maximum value at the onset of the electronic and magnetic transition. These findings confirm recent theoretical results which claim that electron-lattice coupling is important for the MIT in V{sub 2}O{sub 3}. Our results suggest that the distortion of the symmetry of the basal plane plays a decisive role for the MIT and orbital degrees of freedom drive the MIT via changes in hybridization.We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5{sup +} 192 keV excited state of {sup 114}In (probe for nuclear quadrupole alignment spectroscopy), the 9/2{sup +} ground state of {sup 115}In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2{sup +} 659 keV excited state of {sup 117}In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of {sup 114}In [Q({sup 114}In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q({sup 114}In)=+0.16(6) b and +0.739(12) b]. For {sup 115}In and {sup 117}In our results are in excellent agreement with the literature and in the last case Q({sup 117}In) is determined with more precision. In the case of Q({sup 117}In), its sign cannot be determined because standard {gamma}-{gamma} perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency.An original epitaxial system consisting of two ferrimagnetic insulator layers (CoFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4}) separated by a nonmagnetic metallic layer (Au) has been grown. The transport properties in the current in plane geometry indicate that the conduction of the CoFe{sub 2}O{sub 4}/Au/Fe{sub 3}O{sub 4} trilayer takes place within the thin metallic layer. The giant magnetoresistance (GMR) observed (2.6% at 10 K) is associated to the switching from a parallel to an antiparallel configuration of the magnetization of the two ferrite layers and corresponds to the spin dependence of electron reflection at the interfaces with a large contribution of specular reflections. The increase of the GMR (5% at 10 K) in the symmetrical interface CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4}/Au/Fe{sub 3}O{sub 4} system and the effect of the interface roughness on the GMR confirm the presence of this spin-dependent specular reflection.The effect of externally applied pressure on the magnetic behavior of Cu{sub 2}Te{sub 2}O{sub 5}(Br{sub x}Cl{sub 1-x}){sub 2} with x=0, 0.73, and 1, is investigated by a combination of magnetic susceptibility, neutron diffraction, and neutron inelastic scattering measurements. The magnetic transition temperatures of the x=0 and 0.73 compositions are observed to increase linearly with increasing pressure at a rate of 0.23(2) and 0.04(1) K/kbar, respectively. However, the bromide shows contrasting behavior with a large suppression of the transition temperature under pressure, at a rate of -0.95(9) K/kbar. In neutron inelastic scattering measurements of Cu{sub 2}Te{sub 2}O{sub 5}Br{sub 2} under pressure only a small change to the ambient pressure magnetic excitations were observed. A peak in the density of states was seen to shift from {approx}5 meV in ambient pressure to {approx}6 meV under an applied pressure of 11.3 kbar, which was associated with an increase in the overall magnetic coupling strength.A KH{sub 2}PO{sub 4} (KDP) crystal, irradiated by a 1 MeV hydrogen ion beam to a dose of 10{sup 15} ions/cm{sup 2}, was studied by means of x-ray diffraction (XRD), {sup 1}H nuclear magnetic resonance (NMR), and dielectric constant measurements. The XRD pattern for the a-cut KDP crystal revealed a decrease in the lattice constant along the a axis after the proton irradiation. According to the {sup 1}H NMR spin-lattice relaxation rate measurements, the proton irradiation gave rise to reduction in the activation energy in the paraelectric phase, from 0.42 to 0.28 eV, in agreement with the temperature dependent second moment measurements indicating the proton motion is more activated after the proton irradiation. Besides, analysis of the temperature-dependent dielectric constants using a mean-field approximation revealed a change in the hydrogen bond induced by the proton irradiation.


Physical Review B | 2005

Electron spin resonance and magnetic characterization of the Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}

M. J. M. Pires; A. Magnus G. Carvalho; S. Gama; E. C. F. da Silva; A. A. Coelho; A. M. Mansanares

We have studied [Co{sub 2}MnGe/V]{sub N} multilayers with a thickness of the V layers t{sub V} between 1.5 and 10 nm and a fixed thickness of the Heusler layer t{sub Co{sub 2}}{sub MnGe}=3 nm by x-ray scattering, neutron reflectivity, and magnetization measurements. In the thickness range t{sub V}{ =}4 nm the multilayers undergo a cluster glass transition at T{sub f}{approx_equal}150 K. At high temperatures above T{sub N} or T{sub f} the mutilayers are superparamagnetic with a huge cluster magnetic moment {mu}{sub c}{>=}10{sup 5}{mu}{sub B}.The halides CaCl{sub 2},CaBr{sub 2}, and CrCl{sub 2} all adopt, at room temperature, the same distorted rutile structure, in orthorhombic space group Pnnm, known as the calcium chloride structure. Upon heating, CaCl{sub 2} and CaBr{sub 2} each undergoes a continuous transformation to the true tetragonal rutile structure, in space group P4{sub 2}/mnm, the transition temperatures being 235 and 553 deg. C, respectively. By contrast, the structural change in CrCl{sub 2} upon heating is just further elongation of octahedra already lengthened by Jahn-Teller effects, and no phase transition occurs. The orthorhombic structure is maintained by a strong and temperature-dependent geometrical coupling of the orthorhombic strain to the order parameter, represented by the tilt angle of the CrCl{sub 6} octahedron.The author has studied the influence of fermion-boson conversion on Mott states near Feshbach resonances. It is demonstrated that Mott states are unstable with respect to fermion-boson conversion. A branch of collective modes in superfluids has been found, which involve antisymmetric phase oscillations in fermionic and bosonic channels and are always gapped. The low-energy quantum dynamics of a Fermi-Bose superfluid can be fully characterized by either an effective coupled U(1)xU(1) quantum rotor Hamiltonian or a coupled XXZxXXZ spin model.Anisotropic Pr-Fe-B thin films with perpendicular texture have been prepared by magnetron sputtering and subsequent heat treatment. After crystallization at 873 K, the films deposited at 773 K show a perpendicular anisotropic texture, due to the existence of a weak anisotropy in the as-deposited films. The deposition rate has been proved to be an important parameter for the control of microstructure, morphology, and coercivity. The coercivity mechanism of the anisotropic Pr-Fe-B films has been studied by analyzing the temperature dependence of coercivity from 5 to 300 K, based on the micromagnetic model. Nucleation of reversed domains, taking place preferentially at the grain surface where the magnetic anisotropy is reduced and the local demagnetization field is the highest, is determined to be the leading mechanism in controlling the magnetization reversal processes of the anisotropic Pr-Fe-B films. Though the grains in the films are strongly magnetically coupled, the magnetization reversal processes in the Pr-Fe-B thin films are not realized by uniform rotations of the magnetic moments.Electron spin resonance was applied on samples of Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}. The results are discussed under the scope of magnetization measurements, optical metallography, and wavelength dispersive spectroscopy. Polycrystalline arc-melted samples submitted to different heat treatments were investigated. The correlation of the electron spin resonance and magnetization results permitted a characterization of the present phases and their transitions. Two coexisting phases in the temperature range between two phase transitions have been identified and associated to distinct crystallographic phases. Additionally, the magnetic moment at high temperatures has been estimated from the measured effective g factor. A peak value of 21.5 J/kg K for the magnetocaloric effect was obtained for a sample heat treated at 1500 deg. C for 16 h.Geometrical models of neutral single vacancy-arsenic complexes are determined from first principles and used for atomistic simulation of Rutherford backscattering channeling (RBS-C) spectra in heavily As-doped crystalline silicon, both with and without compensating Si self-interstitials. The goal is to investigate whether the relaxation patterns of complexes containing different numbers (from 1 to 4) of As atoms can be used as a fingerprint in structural analysis by conventional RBS-C. Simulation of RBS-C spectra in million-atoms supercells containing a population of As{sub m}V, show the off-lattice displacement of the Si atoms neighboring the vacancy, due to Jahn-Teller effect. On the other side, As displacement is found to be similar in all clusters investigated. The present results suggest that in the case of samples equilibrated at high temperature, the lack of any significant disorder of Si atoms is consistent with the hypothesis of electrically inactive As being in the form of either As{sub 3}V or As{sub 4}V complexes.The ternary germanide La{sub 3}Pd{sub 4}Ge{sub 4} has been prepared by arc melting. This compound takes a body-centered lattice with an orthorhombic unit cell with the lattice parameters of a=4.2200(3) A, b=4.3850(3) A, and c=25.003(2) A. The crystal structure of La{sub 3}Pd{sub 4}Ge{sub 4} is U{sub 3}Ni{sub 4}Si{sub 4}-type with the space group of Immm, consisting of the combination of structural units of AlB{sub 2}-type and BaAl{sub 4}-type layers. This compound is a type-II superconductor with a critical temperature (T{sub c}) of 2.75 K. The lower critical field H{sub c1}(0) is estimated to be 54 Oe. The upper critical field H{sub c2}(0) estimated by linear extrapolation of the H{sub c2}(T) curves is about 4.0 kOe, whereas the Werthamer-Hefland-Hohemberg theory gives H{sub c2}(0){sup WHH}=3.0 kOe. This is an interesting observation of superconductivity in the compounds with U{sub 3}Ni{sub 4}Si{sub 4}-type structure. The coherence length {xi}(0) of 330 A and the penetration depth {lambda}(0) of 2480 A are derived.


Physical Review B | 2009

Acoustic detection of the magnetocaloric effect: Application to Gd and Gd 5.09 Ge 2.03 Si 1.88

A. O. Guimarães; M. E. Soffner; A. M. Mansanares; A.A. Coelho; A. Magnus G. Carvalho; M. J. M. Pires; S. Gama; E. C. F. da Silva


Physical Review B | 2005

Electron spin resonance and magnetic characterization of the Gd 5.09 Ge 2.03 Si 1.88

M. J. M. Pires; A. Magnus G. Carvalho; S. Gama; E. C. F. da Silva; A.A. Coelho; A. M. Mansanares

Collaboration


Dive into the M. J. M. Pires's collaboration.

Top Co-Authors

Avatar

A. M. Mansanares

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Gama

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.A. Coelho

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

A. O. Guimarães

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

A. A. Coelho

Federal University of Rio Grande do Norte

View shared research outputs
Top Co-Authors

Avatar

M. E. Soffner

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge